

Product Portfolio 2020

Pumps 1 Automation

Type Series Index

Amacan K	52	Hyamat K	46	RVM	70
Amacan P	53		46	RVR	70
		Hyamat SVP			
Amacan S	53	Hyamat SVP ECO	46	RVT	70
Amaclean	48	Hyamat V	46	RWCP / RWCN	41
Amacontrol II	74	Hya-Rain / Hya-Rain N	42		
Amacontrol III	74	Hya-Rain Eco	42	Sewabloc	55
Ama-Drainer 4/5	47	Hya-Solo D	44	Sewatec	55
Ama-Drainer 80, 100	48	Hya-Solo D FL	45	Sewatec SPN	55
Ama-Drainer N	47	Hya-Solo D FL Compact	45	SEZ	67
Ama-Drainer-Box	49	Hya-Solo DSV	45	SEZT	67
Ama-Drainer-Box Mini	49	Hyatronic N	74	SNW	67
	54	riyati offic N	74	SPY	
Amaline					68
Amamix	54	ILN	32	SRL	50
Ama-Porter CK Pump Station	50	ILNC	33	SRP	50
Ama-Porter F / S	48	INVCP	40	SRS	51
Amaprop	54	Ixo N	43	Surpress Feu SFE	47
Amarex	52	Ixo-Pro	43		46
		IXO-PTO	43	Surpresschrom SIC.2	
Amarex KRT	52			Surpresschrom SIC.2 SVP	47
Amarex N	52	KSB Delta Basic MVP/SVP	44	Surpresschrom SIC.2 V	47
AU	59	KSB Delta Macro F/VC/SVP	43		
AU Monobloc	59	KSB Delta Primo F/VC/SVP	44	TBC	56
7.0 Monobioc	33	KSB Delta Solo MVP/SVP	44	150	30
B Pump	61	KSB Delta Solo/Basic Compact MVP	44	UPA 150C	60
Beveron	68	KSB Guard	29	UPA 200, 200B, 250C	60
		KSB SuPremE	28	UPA 300, 350	60
Calio	31	KSB UMA-S	28	UPA 400-850	61
Calio S		KWP		UPA D	
	30		55		61
Calio Z	31	KWP-Bloc	55	UPA Control	73
Calio-Therm NC	30			UPAchrom 100 CC	60
Calio-Therm S	30	LCC-M	56	UPAchrom 100 CN	60
Calio-Therm S NC/NCV	30	LCC-R	56		
				\ //	C 4
Cervomatic EDP.2	73	LCV	57	Vitacast	64
CHTA / CHTC / CHTD	65	LevelControl Basic 2	73	Vitacast Bloc	64
CHTR	40	LHD	57	Vitachrom	64
CHTRa	40	LSA-S	56	Vitalobe	65
CINCP / CINCN	40	LUV / LUVA	66	Vitaprime	64
				•	
CK 800 Pump Station	50	LUV Nuclear	69	Vitastage	65
CK 1000 Pump Station	50				
Comeo	62	Magnochem	38	WBC	56
Compacta	49	Magnochem 685	38	WKTB	66
Controlmatic E	73	Magnochem-Bloc	38	WKTR	41
		5		VVICIN	41
Controlmatic E.2	73	MDX	57		
CPKN	37	Megabloc	35	YNK	66
CTN	39	MegaCPK	36		
		Megaline	33	ZW	58
DU / EU	72	Meganorm	35	2**	30
D0 / L0	12				
		MHD	57		
EDS	71	mini-Compacta	49		
Estigia	40	MK / MKY	48		
Etabloc	34	Movitec	62		
	36	Movitec H(S)I	62		
Ftabloc SVT		(-)	62		
Etabloc SYT		Movitec VCI			
Etachrom B	34				
Etachrom B Etachrom L	34	Multi Eco	42		
Etachrom B		Multi Eco Multi Eco-Pro	42 42		
Etachrom B Etachrom L Etaline	34 32	Multi Eco-Pro	42 42		
Etachrom B Etachrom L Etaline Etaline DL	34 32 31	Multi Eco-Pro Multi Eco-Top	42 42 43		
Etachrom B Etachrom L Etaline Etaline DL Etaline L	34 32 31 31	Multi Eco-Pro Multi Eco-Top Multitec	42 42 43 63		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT	34 32 31 31 36	Multi Eco-Pro Multi Eco-Top	42 42 43		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z	34 32 31 31 36 32	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO	42 42 43 63 71		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline Z	34 32 31 31 36 32 32	Multi Eco-Pro Multi Eco-Top Multitec	42 42 43 63		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z	34 32 31 31 36 32 32 32	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO	42 42 43 63 71		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline Z	34 32 31 31 36 32 32	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO	42 42 43 63 71		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY	34 32 31 31 36 32 32 33 36	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ	42 42 43 63 71 63		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V	34 32 31 31 36 32 32 33 36 34	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW	42 42 43 63 71 63 67 68		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R	34 32 31 31 36 32 32 33 36 34	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ	42 42 43 63 71 63 67 68 67		
Etachrom B Etachrom L Etaline Etaline DL Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm-R Etanorm-R Etanorm-R Etanorm-R	34 32 31 36 32 32 33 36 34 33 59	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR	42 42 43 63 71 63 67 68 67 69		
Etachrom B Etachrom L Etaline Etaline DL Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm-R Etaprime B Etaprime L	34 32 31 36 32 32 33 36 34 33 59	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco	42 42 43 63 71 63 67 68 67 69 28		
Etachrom B Etachrom L Etaline Etaline DL Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm-R Etanorm-R Etanorm-R Etanorm-R	34 32 31 36 32 32 33 36 34 33 59	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR	42 42 43 63 71 63 67 68 67 69		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I	34 32 31 31 36 32 32 33 36 34 33 59 59 38	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R	42 42 43 63 71 63 67 68 67 69 28 28		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-l Etaseco RVP	34 32 31 31 36 32 32 33 36 34 33 59 59 59 38	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco	42 42 43 63 71 63 67 68 67 69 28		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N	34 32 31 31 36 32 32 33 36 34 33 59 59 59 38 38	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter	42 42 43 63 71 63 67 68 67 69 28 28 29		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-l Etaseco RVP	34 32 31 31 36 32 32 33 36 34 33 59 59 59 38	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV	42 42 43 63 71 63 67 68 67 69 28 28 29		
Etachrom B Etachrom L Etaline Etaline DL Etaline I Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L	34 32 31 36 32 32 33 36 34 33 59 59 38 38 49 59	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO	42 42 43 63 71 63 67 68 67 69 28 28 29 71 63		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L	34 32 31 36 32 32 33 36 34 33 59 59 38 38 49 59	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP	42 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63		
Etachrom B Etachrom L Etaline Etaline DL Etaline I Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L	34 32 31 36 32 32 33 36 34 33 59 59 38 38 49 59	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO	42 42 43 63 71 63 67 68 67 69 28 28 29 71 63		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L	34 32 31 36 32 32 33 36 34 33 59 59 38 38 49 59	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER	42 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 63 68		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N	34 32 31 36 32 32 33 36 34 33 59 59 38 38 49 59	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLO RDLP RER RHD	42 42 43 63 71 63 67 68 67 69 28 29 71 63 63 63 68 69		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD	34 32 31 31 36 32 32 33 36 34 33 59 59 59 38 38 49 59	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM	42 42 43 63 71 63 67 68 67 69 28 29 71 63 63 63 66 69 69		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI	34 32 31 36 32 32 33 36 34 33 59 59 59 38 49 59 57 43	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR	42 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 63 68 69 69 70		
Etachrom B Etachrom L Etaline Etaline DL Etaline I Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM	34 32 31 36 32 32 33 36 34 33 59 59 38 38 49 59 59	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR Rotex	42 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 68 69 69 69 70 48		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI	34 32 31 36 32 32 33 36 34 33 59 59 59 38 49 59 57 43	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR	42 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 63 68 69 69 70		
Etachrom B Etachrom L Etaline Etaline DL Etaline I Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM	34 32 31 36 32 32 33 36 34 33 59 59 38 38 49 59 57 43	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR Rotex	42 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 68 69 69 69 70 48		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HGM-RO HPH	34 32 31 36 32 32 33 36 34 33 59 59 38 38 49 59 57 43 65 66 66 67 71 35	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR ROtex RPH RPHb / RPHd	42 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 68 69 69 70 48 39 39		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HGM-RO HPH HPK	34 32 31 36 32 32 33 36 34 33 59 59 38 38 49 59 57 43 65 66 66 66 66 71 35 35	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR Rotex RPH RPHb / RPHd RPH-LF	42 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 63 68 69 69 70 48 39 39		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HGM-RO HPH HPK HPK-L	34 32 31 36 32 32 33 36 34 33 59 59 38 49 59 57 43 65 66 66 71 35 35 35	Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR Rotex RPH RPHb / RPHd RPH-LF RPH-RO	42 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 63 68 69 70 48 39 39 70		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HGM-RO HPH HPK HPK-L HVF	34 32 31 36 32 32 33 36 34 33 59 59 38 49 59 57 43 65 66 66 71 35 35 35 35	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR Rotex RPH RPHb / RPHd RPH-LF RPH-RO RPH-V	42 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 63 69 69 70 48 39 39 39 39		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HGM-RO HPH HPK HPK-L	34 32 31 36 32 32 33 36 34 33 59 59 38 49 59 57 43 65 66 66 71 35 35 35	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR Rotex RPH RPHb / RPHd RPH-LF RPH-RO RPH-V RSR	42 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 68 69 70 48 39 39 39 70 39 68		
Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HGM-RO HPH HPK HPK-L HVF	34 32 31 36 32 32 33 36 34 33 59 59 38 49 59 57 43 65 66 66 71 35 35 35 35	Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR Rotex RPH RPHb / RPHd RPH-LF RPH-RO RPH-V	42 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 63 69 69 70 48 39 39 39 39		

Our tradition:

Competence since 1871

We have supplied generations of customers worldwide with pumps, valves, automation products and services. A company with that kind of experience knows that success is a process based on a stream of innovations. A process made possible by a close working alliance between developer and user, between production and practice.

Partners achieve more together.

We do everything possible to ensure that our customers always have access to the ideal product and system solution. KSB is a loyal partner:

- Over 147 years' experience
- Present in more than 100 countries
- More than 15,000 employees
- More than 170 service centres worldwide
- Approximately 3,000 service specialists

Smart services for maximum availability and efficiency

As a leading supplier of pumps and valves, we attach great importance to providing you with a comprehensive service of the highest quality. In fact, we believe it's so important that we even gave it a special name: KSB SupremeServ.

KSB SupremeServ is on hand to support you with classic and digital service and spare parts solutions over the entire product life cycle. Whether it's a KSB product, non-KSB product or other rotating equipment, you'll benefit from the reliable and sustainable operation of your system.

Applications:

- Water and Waste Water
- Energy
- Mining

- Industry
- Building Services

Wherever and whenever you need us, we're there for you – worldwide. www.ksb.com

KSB SupremeServ

Our mission:

Certified quality assurance

First-class products and excellent service take top priority at KSB. To maintain this level of excellence, we have developed a modern quality management system with globally applicable guidelines. It is based on the Business Excellence model of the European Foundation for Quality Management, which already ensures improved quality management Europewide.

Our guidelines define uniform quality for all KSB locations and have helped us to optimise our manufacturing processes. The results are shorter delivery times and global availability of our products. These guidelines govern the way we act so comprehensively that even the competence of our consulting and the good value for money we offer are clearly stipulated. Like the 'Made in Germany' quality seal, we introduced internal certification as a sign of the highest quality: 'Made by KSB'.

Our five key goals:

- Maximum customer satisfaction: We do everything to fulfil our customers' wishes on time and in full.
- Fostering quality awareness: We put our quality commitment into daily practice – from executives to employees, whose qualifications and competence we foster through continuing training.
- Prevention rather than cure: We systematically analyse errors and prevent the causes.
- Improvement in quality: We continually optimise our processes in order to work more efficiently.
- Involvement of suppliers: We attach great importance to working together fairly and openly to achieve our shared goals.

As a signatory to the United Nations Global Compact, KSB is committed to endorsing the ten principles of the international community in the areas of human rights, labour standards, environmental protection and anticorruption.

Industry 4.0: we have experience with the future

Digital networking of production systems is one of the key challenges ahead. An expert in engineering with long-standing experience in developing Industry 4.0 solutions, KSB is your ideal partner to achieve:

- Resource efficiency and optimised use of materials
- Availability and operating reliability
- Flexibility through short-term reconfigurability
- Reduction of time to market

Increase your system's productivity already today with KSB's smart products and services: Use our intelligent technologies designed to communicate, such as PumpDrive and PumpMeter, to lay a foundation for your smart factory. Find out more about our future-driven solutions at www.ksb.com/industry40

FluidFuture®: the energy-saving concept for your system

Many systems do run reliably but they also use a lot more power than necessary. The solution: efficiency optimisation with FluidFuture® in four steps. We look at the entire hydraulic system to achieve maximum energy efficiency throughout the life cycle. The optimisation costs will pay for themselves within a short period through the high energy savings that can be made.

The process and its four steps are clearly defined – based on extensive expertise and experience. This systematic and targeted approach ensures maximum savings at minimum costs. Perfectly matching the hydraulic system, drive and automation products as well as the piping dimensions can result in savings of up to 60 %.

We reduce the operating costs of your system by combining our expert knowledge with smart products and services. This is our joint contribution towards an energy-efficient future.

More on FluidFuture®: www.ksb.com/fluidfuture

General Information

ErP	ErP regulations stipulating new, stricter minimum efficiency values became effective at the start of 2015. Since then, only pumps and motors which satisfy the energy efficiency requirements of the European Union's ErP Directive may be placed on the market. For KSB's products this is child's play. They are so efficient, many actually exceed the values required since 2015 – some even those applicable from 2017 as per the ErP regulations.
Regional products	Not all depicted products are available for sale in every country. Products only available in individual regions are indicated accordingly. Please contact your sales representative for details.
Trademark rights	All trademarks or company logos shown in the catalogue are protected by trademark rights owned by KSB SE & Co. KGaA and/or a KSB Group company. The absence of the "@" symbol should not be interpreted to mean that the term is not a registered trademark.
Product illustrations	The products illustrated as examples may include options and accessories incurring a surcharge. Subject to modifications due to technical enhancements.
Product information	For information as per chemicals Regulation (EC) No 1907/2006 (REACH), see www.ksb.com/reach.

Pumps

•										
Design / Application	Type series	Page	ErP	Factory-automated	Automation available	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	Calio-Therm S NC/NCV	30								
Drinking water circulators, fixed speed	Calio-Therm NC	30								
Drinking water circulators, variable speed	Calio-Therm S	30								
Drinking water circulators, variable speed	Calio S	30								
Circulators, variable speed	Calio	31								
Circulators, variable speed	Calio Z		-							
		31								
	Etaline L	31	-				-			
	Etaline DL	31								
	Etaline	32								
In-line pumps	Etaline Z	32								
	Etaline-R	32								
	ILN	32								
	ILNC	33								
	Megaline	33								
	Etanorm	33								
	Etanorm-R	33								
	Etabloc	34								
Chandandia d / dasa saudad aurosa	Etachrom B	34								
Standardised / close-coupled pumps	Etachrom L	34								
	Etanorm V	34								
	Meganorm	35								
	Megabloc	35								
	HPK-L	35								
Hot water pumps	НРН	35								
not mater pamps	HPK	35								
	Etanorm SYT / RSY	36						_		
Hot water / thermal oil pumps	Etabloc SYT	36					-			
not water / triermai on pumps	Etaline SYT	36								
Standardised chemical pumps	MegaCPK	36			-			-		
	CPKN	37			-		_	_		
	Magnochem	38			-					
	Magnochem 685	38								
Seal-less pumps	Magnochem-Bloc	38								
	Etaseco / Etaseco-I	38								
	Etaseco RVP	38								
	RPH	39								
	RPH-LF	39								
	RPHb / RPHd	39								
	RPH-V	39								
	CTN	39								
Process number	CHTR	40								
Process pumps	CHTRa	40								
	CINCP / CINCN	40								
	INVCP	40								
	Estigia	40								
	RWCP / RWCN	41								
	WKTR	41								
	Hya-Rain / Hya-Rain N	42								
Rainwater harvesting systems	Hya-Rain Eco	42								
	ya nam 200	74				_			_	

Design / Application	Type series	Page	ErP	Factory-automated	Automation available	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	Multi Eco	42								
	Multi Eco-Pro	42								
Domestic water supply systems with automatic	Multi Eco-Top	43								
control unit / swimming pool pumps	Ixo N	43								
	Ixo-Pro	43								
	Filtra N	43								
	KSB Delta Macro F/VC/SVP	43								
	KSB Delta Solo/Basic Compact MVP	44								
	KSB Delta Basic MVP/SVP	44								
	KSB Delta Primo F/VC/SVP	44								
	KSB Delta Solo MVP/SVP	44								
	Hya-Solo D	44								
	Hya-Solo DSV	45								
	Hya-Solo D FL	45								
	Hya-Duo D FL	45								
Pressure booster systems	Hya-Solo D FL Compact	45								
	Hya-Duo D FL Compact	45								
	Hyamat K	46								
	Hyamat V	46								
	Hyamat SVP	46								
	Hyamat SVP ECO	46								
	Surpresschrom SIC.2	46								
	Surpresschrom SIC.2 V	47								
	Surpresschrom SIC.2 SVP	47								
	Surpress Feu SFE	47								
	Ama-Drainer N	47								
	Ama-Drainer 4 / 5	47								
	Ama-Drainer 80, 100	48								
Drainage pumps / waste water pumps	Ama-Porter F / S	48								
	Rotex	48								
	MK / MKY	48								
	Amaclean	48								
	Ama-Drainer-Box Mini	49								
	Ama-Drainer-Box	49								
	Evamatic-Box N	49								
	mini-Compacta	49								
	Compacta	49								
Lifting units / package pump stations	CK 800 Pump Station	50								
	CK 1000 Pump Station	50								
	Ama-Porter CK Pump Station	50								
	SRP	50								
	SRL	50								
	SRS	51								
	Amarex	52								
Submersible motor pumps	Amarex N	52					-			
Submersible motor pumps	Amarex KRT	52								
	Amacan K	52					_			
Submersible pumps in discharge tubes		53								
Jubinersible pumps in discharge tubes	Amacan S									
	Amamiy	53								
Missage / paidatage / taula alaan '	Amamix	54					-			
Mixers / agitators / tank cleaning units	Amaprop	54					-			
	Amaline	54								

Design / Application	Type series	Page	ErP	Factory-automated	Automation available	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	Sewatec	55								
	Sewatec SPN	55								
Pumps for solids-laden fluids	Sewabloc	55								
	KWP	55								
	KWP-Bloc	55								
	WBC	56								
	LSA-S	56								
	LCC-M	56								
	LCC-R	56								
	TBC	56								
	LCV	57								
Slurry pumps	FGD	57								
	MHD	57								
	LHD	57								
	MDX	57								
	ZW	58								
	HVF	58								
	Etaprime L	59								
	Etaprime B	59								
Self-priming pumps	EZ B/L	59								
	AU	59								
	AU Monobloc	59								
	UPAchrom 100 CC	60								
	UPAchrom 100 CN	60								
	UPA 150C	60								
Submersible borehole pumps	UPA 200, 200B, 250C	60								
	UPA 300, 350	60								
	UPA 400-850	61								
	UPA D	61								
Vertical turbine pumps	B Pump	61								
	Comeo	62								
	Movitec H(S)I	62								
High-pressure pumps	Movitec	62								
3	Movitec VCI	62								
	Multitec	63								
	Omega	63								
Axially split pumps	RDLO	63								
2 1 1 P	RDLP	63								
	Vitachrom	64								
	Vitacast	64								
Hygienic pumps for the food, beverage and	Vitacast Bloc	64								
pharmaceutical industries	Vitaprime	64								
•	Vitastage	65								
	Vitalobe	65								

Design / Application	Type series	Page	ErP	Factory-automated	Automation available	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	CHTA / CHTC / CHTD	65								
	HGB / HGC / HGD	65								
	HGI	66								
	HGM	66								
	YNK	66								
	LUV / LUVA	66								
	WKTB	66								
Pumps for power station conventional islands	SEZ	67								
	SEZT	67								
	PHZ	67								
	PNZ	67								
	SNW	67								
	PNW	68								
	Beveron	68								
	SPY	68								
	RER	68								
	RSR	68								
	RUV	69								
	PSR	69								
	RHD	69								
Pumps for nuclear power stations	LUV Nuclear	69								
	RHM	69								
	RVM	70								
	RHR	70								
	RVR	70								
	RVT	70								
	RPH-RO	70								
Pumps for desalination by reverse osmosis	HGM-RO	71								
	Multitec-RO	71								
Positive displacement pumps	RC / RCV	71								
Eiro fighting systems	EDS	71								
Fire-fighting systems	DU / EU	72								

Automation and drives

Design / Application	Type series	Page	ErP	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
Automation and drives	KSB SuPremE	28						
Automation and unives	KSB UMA-S	28						
	Controlmatic E	73						
	Controlmatic E.2	73						
Control units	Cervomatic EDP.2	73						
Control units	LevelControl Basic 2	73						
	UPA Control	73						
	Hyatronic N	74						
Variable speed systems	PumpDrive 2 / PumpDrive 2 Eco	28						
Variable speed systems	PumpDrive R	28						
	PumpMeter	29						
Manitaring and discussion	KSB Guard	29						
Monitoring and diagnosis	Amacontrol II	74						
	Amacontrol III	74						

		Calio-Therm S NC/NCV Calio-Therm NC		Calio-Therm S		Calio S	Calio	Calio 2	Etaline L	Etaline DL	Etaline	Etaline Z	Etaline-R	IIN	Megaline		Etanorm	Etanorm-R	Etabloc	Etachrom B	Etachrom L	Etanorm V	Meganorm	Megabloc								
Waste water with faeces	p		p		ာ				Sd							Sd										\Box		\Box	\Box		\Box	
Waste water without faeces	bed		variable speed		Circulators, variable speed				sdwnd							sdwnd												\Box				
Aggressive liquids	eds		e s		e e				<u>و</u>							ο												4	\perp	\perp	\perp	\perp
Inorganic liquids	Į.¥Į		ria		ria		4	-	In-line			4	4	\perp	\perp	aldr	_	Ш							_	\dashv	_	4	\perp	\perp	\perp	\perp
Activated sludge	ors		N Ya		y, va		4	_ [_		Ш	_	4	\perp	\perp	_ S	_	Ш		_				_	\dashv	_	\perp	\downarrow	\bot	\perp	\perp	\perp
Brackish water	_ lat	_	tors		tors	_	4	4				_	\rightarrow			ose									\dashv	_	\dashv	\perp	\bot	\perp	\perp	\perp
Service water	<u> </u>				ınla	_	4	4					-		1	\ \ \	-					_	_	4	\dashv	\dashv	\dashv	\perp	\perp	\perp	\perp	\perp
Distillate	te	+	્રાં કે	Н	Ü	-	+	-		-	Н	-	+	+	+	Sed	_	Н	-	_	_	-		_	+	+	+	+	+	+	+	\vdash
Slurries		+	Drinking water circulators,			-	+	_		-	$\vdash \vdash$	\dashv	+	+	+	Standardised / close-coupled	-	\vdash	\vdash	_	_	-	\dashv	_	\dashv	+	+	+	+	+	+	+
Explosive liquids	ing	+	×			\dashv	+	-		<u> </u>	\vdash	\dashv	+	+	+	nd	-	\vdash	$\vdash \vdash$	\dashv	-	-	\dashv	\dashv	+	+	+	+	+	+	+	+
Digested sludge	iş	+	ing	_		\dashv	+	-[-	\vdash	\dashv	+	+	+	Sta	-	\vdash	\vdash	-	-	-	-	-	\dashv	+	+	+	+	+	+	+
Solids (ore, sand, gravel, ash) Flammable liquids	۵	+	rink	\vdash		+	+	-		\vdash	\vdash	+	+	+	+	-	\vdash	\vdash	\vdash	-		-	\dashv	\dashv	+	+	+	+	+	+	+	+
River, lake and groundwater		+	۵	Н		\dashv	+	-[\vdash	\vdash	\dashv	+		+	-	H			\dashv	-	\dashv	\dashv	\dashv	+	+	+	+	+	+	+	+
River, lake and groundwater Liquefied gas		+				\dashv	+	-		\vdash	\vdash	\dashv	+	- "	-	-	F			\dashv	-	\dashv	\dashv	-	+	+	+	+	+	+	+	+
Food and beverage production		+				\dashv	+			\vdash	H	\dashv	+	+	+		\vdash	\vdash	\dashv	\dashv		\dashv	\dashv	\dashv	+	+	+	+	+	+	+	+
Gas-containing liquids		+		Н		\dashv	+	-	_		H	\dashv	+	+	+	-	-	Н	\dashv	\dashv	-	\dashv	\dashv	\dashv	+	+	+	+	+	+	+	+
Gas turbine fuels	_	+	+			\dashv	+	-			\vdash	\dashv	+	+	+	-	\vdash		\dashv		\dashv	_			+	+	+	+	+	+	+	+
Filtered water	1	+	+			\dashv	+	-			H	\dashv	\dashv	+	+		\vdash	Н	\vdash	\dashv	_	\dashv	\dashv	\dashv	+	+	+	+	+	+	+	+
Geothermal water		+				\dashv	+				\vdash	\dashv	\dashv	+	+	-	H	Н	\dashv		\dashv	\dashv			\dashv	+	+	+	+	+	+	+
Harmful liquids							\dashv				\Box	\dashv	\dashv	+						\dashv		7			\dashv	\dashv	+	+	+	+	+	+
Toxic liquids	_	\top					\top					\dashv	\dashv	\top	\top										\dashv	\dashv	\top	\top	\top	\top	+	+
High-temperature hot water		\top					\top							\top		ī									\neg	十	\top	\top	\top	\top	\top	\top
Heating water																ī									\exists	\top	\top	\top	\top	\top	\top	\top
Highly aggressive liquids																									T	\exists	T	T			T	Т
Industrial service water																ī																
Condensate																															\mathbb{L}	
Corrosive liquids																																
Valuable liquids																	L														\perp	\perp
Fuels	_						4				Ш		4	\perp				Ш							4	_	4	4	\perp	\perp	Ļ	Ļ
Coolants																												4		\perp	\perp	Ļ
Cooling lubricant							4					_	_	\perp			L	Ш						_	_	_	_	4	\perp	\perp	\perp	\perp
Cooling water		_		▣					_		旦	-	•			L		П				4			4	4	4	\downarrow	\perp	4	\perp	\perp
Volatile liquids						_	_					_	_	_											4	_	4	\perp	\perp	\perp	\perp	\perp
Fire-fighting water		_				_	4	4				_	4			Ц	-				_	_			\dashv	\dashv	\perp	\perp	\perp	\perp	\perp	\perp
Solvents	-	+				\dashv	+			-	$\vdash \vdash$	\dashv	+	\perp	+		<u> </u>	\vdash		_	_	-	-	_	\dashv	+	+	+	+	+	+	\vdash
Seawater		+				\dashv	+	-[_	\vdash	\dashv	+	-	-		H		-			-	\dashv	-	+	+	+	+	+	+	+	+
Oils Organic liquids		+		\vdash		-	+	-		-	\vdash	-	+	+	+	-	F					-	\dashv	\dashv	+	+	+	+	+	+	+	+
Organic liquids Pharmaceutical fluids		+				\dashv	+	-[\vdash	\vdash	\dashv	+	+	+		-	\vdash	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	+	+	+	+	+	+	+
Polymerising liquids		+				\dashv	+	-[-	H	+	+	+	+		\vdash	\vdash	\dashv	\dashv		\dashv	\dashv	\dashv	+	+	+	+	+	+	+	+
Rainwater / stormwater	-	+				\dashv	+	-		\vdash	\vdash	\dashv	+	+	+			\vdash	\dashv	\dashv	\dashv	\dashv	\dashv	-	\dashv	+	+	+	+	+	+	+
Cleaning agents	_	+				\dashv	+			\vdash	H	\dashv	\dashv	•				\vdash				\dashv			+	+	+	+	+	+	+	+
Raw sludge		+				\dashv	+				\vdash	\dashv	\dashv	- •	+			\Box	-	-	-	\dashv	_	-	+	+	+	+	+	+	+	+
Lubricants		+				\dashv	+			\vdash	H	\dashv	\dashv	+	\top			П	H	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	+	+	+	+	+	+	+
Grey water	_	\top				\dashv	\top				\Box	\dashv	\dashv	\top	\top			П	\Box	\dashv		\dashv	\exists	\dashv	\dashv	\dashv	\top	\top	\top	\top	\top	\top
Swimming pool water		\top				\dashv	\top				П	\dashv	\dashv									\exists			\dashv	\top	\top	\top	\top		\top	
Brine													_	• •					-						\Box	\Box						
Feed water																															I	I
Dipping paints																_									\Box			\Box			L	Ļ
Drinking water		•		▣					•	•		•		• •						•					\perp	\Box	\perp	\perp		\perp	\perp	\perp
Thermal oil	-	\perp				_					Ш	_	_	\perp	\perp			Ш				_				_	\perp	\perp	\perp	\perp	\perp	\perp
		1 -					=1	- 1				=1	=1		- 1 -									- 1	- 1		- 1		- 1	- 1		
Hot water Wash water		-	4	-		-	- '	_	-	-	-	-		ï			-	-	-	-	-		_	\rightarrow	\rightarrow	+	+	+	+	+	+	+

				V30 / TV3 minor ch3	Etabloc SYT	Etaline SYT		MegaCPK	7	Magnorhem	Magnochem 685	Magnochem-Bloc	Etaseco / Etaseco-l	Etaseco RVP			RPH-LF	Nrna V		~	la .	CINCP / CINCN	a <u>.</u>		KWCP / KWCN		N circle coll / circle coll	Hya-Rain Eco			
	HPK-L	Ŧ	Η̈́	4	Etab	Etali		Meg	CPKN	Mag	Mag	Mag	Etase	Etase		RH	RPH-LF	RPH-V	E	CHTR	CHTRa		INVCP Fig.	Estigla	RWCP.	2	5	Hya-			
Waste water with faeces	bs			bs			bs			bs					bs								-			,	SI				_
Waste water without faeces	Hot water pumps			bumps			un n			Seal-less pumps					Process pumps											2	ren				
Aggressive liquids	r p			oil p			d E			es p					ss p								-		-		3				
Inorganic liquids	/ate						nice			- <u>F</u>					Sec								•			■	2,				
Activated sludge	۲ ا			r.			her			Sea					Pr											Š	Se Aes				
Brackish water	ゴ			the			pe																			2	la l				
Service water				er/			dis																			Š	<u>ē</u>				
Distillate				vat			dar																			2	δ ×				
Slurries				Hot water / thermal			Standardised chemical pumps									Ш		\Box								2.	Kainwater narvesting systems				_
Explosive liquids				I			S																			• •					
Digested sludge								Ĺ			Ţ					Ш															_
Solids (ore, sand, gravel, ash)																Ш		\Box													_
Flammable liquids		\Box																					- 1								_
River, lake and groundwater																															
Liquefied gas		Ш	\square					L	Ш		L			Ш		Ш		Ļ											Ш		_
Food and beverage production		Ш	Ш						Ш		L			Ш		Ш				Ш									Ш	\Box	_
Gas-containing liquids		Ш	\square					ਾ			L					Ш								•							
Gas turbine fuels		Ш	Ш		\perp	\perp			Ш		\perp	\perp	_	Ш		Ш	\perp	\perp	\perp	Ш		\perp	\perp	\perp	\perp			\perp	Ш	\perp	_
Filtered water		Ш	Ш		\perp	\perp		_	Ш		\perp	\perp	\perp	Ш		Щ		\perp					\perp	\perp				\perp	Ш	\perp	_
Geothermal water		Ш	Ш		\perp			_	Ш		\perp	\perp	1	Ш		Щ		\perp	1	Ш		_	_ļ_	\perp				\perp		_	_
Harmful liquids		Ш	Ш		\perp	\perp		•		1	_	_	+				_		_				_	•	-			\perp		_	_
Toxic liquids		\sqcup	Ш		\perp	\perp		•		Ŀ	_	_	-				-		4			_	_ •	•	_			\perp		4	_
High-temperature hot water	•			•				•		-			-	Ш		Щ	_	\perp	-			_	\perp	4	\perp			\perp	\square	4	_
Heating water		\sqcup	Ш		\perp	\perp		_	Ш		+	\perp	-			\sqcup	_	\perp	\perp		4	_	\perp	4	_			\perp		\dashv	_
Highly aggressive liquids		\sqcup	Ш	1	•	+		-		1			\vdash	Ш			- 1		-	Ш	_	_	_	_	_			+		4	_
Industrial service water		\sqcup	\square		+	+		▝			+	+	+			\vdash	_	_	+	\square	_	-+	_	•				+		4	_
Condensate		Щ			\perp	+		_	Ш		+	\perp	-	Ш		\sqcup	_	4	-			_	•	\perp	-			\perp		4	_
Corrosive liquids		\square	Ш		+	-					_	_	1				_		_				_	-	4			+		\dashv	_
Valuable liquids		\sqcup	\square		+	+		▝		-	-	-	-					_	+-	\square	_	_	_	•	4			+		4	_
Fuels		\sqcup	\sqcup		\perp	+		▝		•	_	_	-	Ш			- 1		4			4		•	4			\perp		\dashv	_
Coolants		\square	Ш		\perp	-		_		1	1		-			Щ	_	4	-	\square	_	_	- 1	_	4			\perp		\downarrow	_
Cooling lubricant		\sqcup	Ш		\perp	+		_	Ш		\perp	+	-	Ш		\vdash	_	_	+	\square	_	_		•	\perp			+	\square	4	_
Cooling water					+	+					_	_	+			\rightarrow		_	_		_	-		•	+			+		\dashv	_
Volatile liquids		\dashv	\square		+	+		-		1	-		-				-		1			\dashv	- -	•	-	4	-	+		\dashv	_
Fire-fighting water		\dashv	Н		+	-					+	+	+	닏			_	_	_		_	_	_	_	_			+	$\vdash \vdash$	\dashv	_
Solvents		+	\vdash		+	+				-			-				-		+					\rightarrow	_		-	+		\dashv	_
Seawater			닏		+-	+-		L			+	+	+			H	_	+	_			-		\rightarrow	₽.			+		\dashv	_
Oils				<u> </u>				Ŀ			_			-		-								_	_			+	$\vdash \vdash$	\dashv	_
Organic liquids		-			+	+		-			T		-				- 1	1				-	-	•	-		-	+	$\vdash \vdash$	\dashv	_
Pharmaceutical fluids		+	$\vdash \vdash$		+	+		Ŀ			+	+-	\vdash	$\vdash \vdash$		\vdash	+	+	+	\vdash	\dashv	+	+	+	+		-	+		\dashv	_
Polymerising liquids		+	\vdash		+	+					1		\vdash	$\vdash \vdash$		\vdash	+	+	+-	\vdash	\dashv	+	-	•	+		-	+-		\dashv	_
Rainwater / stormwater		+	\vdash	-	+	+		F					+					+-	-	\vdash	\dashv	_	- '		+		ŀ			\dashv	_
Cleaning agents Raw sludge		+	$\vdash\vdash$	<u> </u>	-	+					1	-	-						+	\vdash	\dashv	-	- 1	-	-			+	\vdash	\dashv	_
		+			+	+		-			+		+	Н			_		+	\vdash	\dashv			+.	_		-	+	\vdash	\dashv	_
Lubricants Grey water		+			+	+							+	\vdash			-		+	\vdash	\dashv	-	-	_	+			+		\dashv	_
Swimming pool water		+	Н		+	+		-	\vdash		+	+	+	\vdash		\vdash	+	+	+	\vdash	\dashv	+	+	+	+			+		+	_
Swimming pool water Brine		+	\vdash		+	+		-					-	Н		\vdash	+	+	+	\vdash	\dashv	+		+	+			+	$\vdash \vdash$	\dashv	_
Feed water				-	+	+					+					\vdash	+	+	+			+	-	+	+		-	+		\dashv	_
Dipping paints					+	+		-	\vdash		+		+	$\vdash \vdash$		\vdash	+	+	+		-	+		+	+			+	$\vdash \vdash$	\dashv	-
Drinking water		+	\vdash		+	+		-			_	_	-	Н		\vdash	+	+	+				-		+		-	+		\dashv	_
Drinking water Thermal oil		H						H		H	_	_	+					+	+		_	\rightarrow	-	\rightarrow				+	H	\dashv	_
Hot water					ŧ			F			_		+				-	-	+		_	-		•	-		-	+		\dashv	_
Wash water						-		-		H			+			\vdash	+	+	+		-				+			+		\dashv	-
**************************************			ш											ш						ш			- -							1	_

		Multi Eco	Multi Eco-Pro	Murti Eco-1 op	IXo Pro	Filtra N		KSB Delta Macro F/VC/SVP	KSB Delta Solo/Basic Compact MVP	KSB Delta Basic MVP/SVP	KSB Delta Primo F/VC/SVP	KSB Delta Solo MVP/SVP	Hya-Solo D	Hya-solo DsV	Hya-Solo D FL Hya-Duo D FL	Hya-Solo D FL Compact	Hya-Duo D FL Compact	Hyamat K	Hyamat V	Hyamat SVP	Hyamat SVP ECO	Surpresschrom SIC.2	Surpresschrom SIC.2 V	Surpresschrom SIC.2 SVP	Surpress Feu SFE								
Waste water with faeces		_			T	T		_			_						T		_	_	_		-					П	Т			Т	\top
Waste water without faeces	m d	7	\top	\top	\top	+	tem		H	\dashv	\dashv	\top	\top	\dagger	\top	\top		П	\neg	\dashv	\dashv	\dashv				\dashv	\dashv	\dashv	\top	\top	\top	\top	\vdash
Aggressive liquids	J D					\top	sys.		П		\dashv	\dashv	\top	\top					\dashv	\dashv	\dashv	\dashv	\exists			\Box	\dashv	\dashv	\top			†	\vdash
Inorganic liquids	bood		\neg			\top	booster systems		П	\neg	T	\dashv	\top	T	\top			П	\dashv	\dashv						\Box	\dashv	\dashv	\top	\top			\vdash
Activated sludge	ing						000																										
Brackish water	nmi						re																										
Service water	Š						Pressure																										L
Distillate	ij	_	_	_	_	_	P.			_	4	_	\perp	4	_	_			_	_	\dashv	_			_		_	_	4	_		\perp	$oxed{\bot}$
Slurries	Domestic water supply systems with automatic control unit / swimming pool pumps	4	_	_	\perp	-		L	\sqcup	\downarrow	4	4	\downarrow	\perp	+	+	\vdash	\sqcup	4	4	\downarrow	4	_	_	_	Щ	4	4	\perp	+	_	-	₩
Explosive liquids	tro	4	\dashv	\perp	+	+			$\vdash \vdash$	\dashv	\dashv	+	+	+	+	-	-	\square	4	4	4	4	_		_	\square	\dashv	+	+	+	+	\vdash	
Digested sludge	Con	\dashv	+	+	+	+		_	$\vdash \vdash$	\dashv	+	+	+	+	+	+	-		\dashv	\dashv	\dashv	4	_	\dashv	_	$\vdash \vdash$	\dashv	\dashv	+	+	+	+	-
Solids (ore, sand, gravel, ash)	atic	\dashv	+	+	+	+		_	\vdash	+	+	+	+	+	+	+	\vdash	\vdash	\dashv	\dashv	\dashv	\dashv	\dashv	-	_	$\vdash \vdash$	\dashv	+	+	+	+	+	\vdash
Flammable liquids River, lake and groundwater	ome	\dashv	+	+	+	+		_	\vdash	\dashv	+	+	+	+	+	+	+	\vdash	\dashv	+	\dashv	\dashv	\dashv			\dashv	+	+	+	+	+	+	\vdash
Liquefied gas	aut	\dashv	\dashv	+	+	+		H	H	\dashv	\dashv	\dashv	+	+	+	+	╁	\vdash	\dashv	\dashv	\dashv	\dashv	\dashv	-	\dashv	\dashv	\dashv	\dashv	+	+	+	+	\vdash
Food and beverage production	Ę.	\dashv	+	+	+	+			H	\dashv	\dashv	+	+	+	+	+	\vdash	\Box	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv		\dashv	\dashv	\dashv	+	+	+	+	\vdash
Gas-containing liquids	N SI	\dashv	_		+	+			\Box	1	\dashv	\dashv		\dagger					_	\dashv	\dashv	\dashv	\dashv				\dashv	\dashv	\top	+			\vdash
Gas turbine fuels	tem	7	\dashv			\dagger			\Box	\dashv	T	\dashv	\top	T	\top				\dashv	\dashv	\dashv	7	\exists			\Box	\dashv	\dashv	\top	\top	1		\vdash
Filtered water	sys		\top		\top	\top			П	\neg	\dashv	T	\top	T	\top			П	寸	\dashv	\dashv	\dashv				П	\dashv	\dashv	\top	\top		\top	\vdash
Geothermal water	plg				Ť	T				T	T			T		İ	İ		Ì							T		T	T			İ	Т
Harmful liquids	lns.																																
Toxic liquids	ater	_				╙					4	\perp	\perp	1									_				_	_		\perp			L
High-temperature hot water	3	4	_	_	\perp	\perp			Ш	4	4	4	4	4	\perp	_			\perp	4	4	4	_		_	Щ	_	4	4	\perp	_		$oxed{oxed}$
Heating water	esti		_	_	_	\perp			Ш	_	4	\perp	_	4	_	_			_	_	_		_				_	4	4	\perp	_	\perp	╙
Highly aggressive liquids	mo(4	_	_	+	+		_	\square	_	4	_	+	4	_	-	-		_	_	\dashv	_	_		_	\dashv	\dashv	_	+	+	-	\vdash	╄
Industrial service water		+	+	-	+	+		•		•	-	-	-	4	+	+	\vdash		-	-	-	-			_	\dashv	\dashv	+	+	+	+	+	⊬
Condensate Corrosive liquids	+	\dashv	+	+	+	+		_	\vdash	+	+	+	+	+	+	+	-	\vdash	\dashv	\dashv	\dashv	-	\dashv		_	\dashv	\dashv	+	+	+	+	+	⊬
Valuable liquids	-	+	\dashv	+	+	+		H	\vdash	\dashv	\dashv	\dashv	+	+	+	+			\dashv	\dashv	\dashv	\dashv	\dashv		-	\dashv	\dashv	\dashv	+	+	+	+	\vdash
Fuels		\dashv	+	+	+	+		H	\vdash	\dashv	\dashv	+	+	+	+	+			\dashv	\dashv	\dashv	\dashv	\dashv		_	\dashv	\dashv	+	+	+	+	+	\vdash
Coolants		\dashv	+	+	+	+		-	\Box	+	\dashv	+	+	+	+	+		Н	\dashv	\dashv	\dashv	+	\dashv			\dashv	\dashv	\dashv	+	+	+	+	\vdash
Cooling lubricant		\dashv	\dashv	1	1	\dagger			H	7	\dashv	1	\top	\dagger	\top	1		H	1	\dashv	\dashv	7	\dashv		\neg	\exists	\dashv	\dashv	\top	\top	1		\vdash
Cooling water		\dashv	\top	\top	\top				\Box	\dashv	\dashv	\top	\dagger	\dagger	\top	†	\top	П	\dashv	\dashv	\dashv	\dashv	\dashv			\dashv	\dashv	1	\dagger	\top	\dagger	T	\vdash
Volatile liquids		\dashv	\top	\top	1	1			П	\dashv	\dashv	\top	\dagger	\top			Ť	П	\dashv	\dashv	\dashv	\dashv	\neg			П	\top	\dashv	\top	\top		T	\top
Fire-fighting water											j			j					j	j	j	j											
Solvents														I	\perp														\perp				
Seawater		_	_			_			Ш	_	4	_		_	_	\perp			_	_		_				Ш	_	4	\perp	_			_
Oils		4	_	_	\perp	-		_	\sqcup	\perp	4	\perp	\perp	\perp	_	+	-	\square	_	\dashv	_	_	_	_		Щ	4	4	\perp	_	_	-	\vdash
Organic liquids		4	_	+	+	+		_	\vdash	+	4	+	+	+	+	+	+	\vdash	_	\dashv	\dashv	4	_	\dashv	_	\square	+	\dashv	+	+	+	+	_
Pharmaceutical fluids		\dashv	+	+	+	+		_	\vdash	+	+	+	+	+	+	+	\vdash	\vdash	\dashv	\dashv	\dashv	\dashv	\dashv	-	_	$\vdash \vdash$	\dashv	+	+	+	+	+	\vdash
Polymerising liquids Rainwater / stormwater		\dashv	+	+	+	+					-	+	-	+	+	+	\vdash								_	\dashv	+	+	+	+	+	+	\vdash
Cleaning agents		\dashv	+	+	+	+				-	-	-	-	+	+	+	+		-	-	-	-	-		\dashv	\dashv	\dashv	+	+	+	+	+	+
Raw sludge		\dashv	+	+	+	+			H	\dashv	\dashv	+	+	+	+	+	+	H	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	-	\dashv	\dashv	+	+	+	+	+	+
Lubricants		\dashv	\dashv	+	\dagger	\dagger			H	\dashv	\dashv	\top	+	+	+		†	\Box	\dashv	\dashv	\dashv	\dashv	\dashv	\neg		\dashv	\dashv	\dashv	\dagger	+	+	\dagger	\vdash
Grey water		\dashv	\dashv	\top	\top				\Box	\dashv	\dashv	\top	\dagger	\dagger	\top	\top	1	П	\dashv	\dashv	\dashv	\dashv	\neg	\neg		П	\dashv	\dashv	\dagger	\top	1	†	\vdash
Swimming pool water												•												•					_				
Brine														I	\perp																		\Box
Feed water		_[Ш		Ţ			Ţ	\Box			Ш	_[_[Ţ	Ţ				\perp
Dipping paints		4	_	_	\perp	_		L	Ш	4	4	\perp	\perp	\perp	\perp	\perp	1	Ш	_	_	\perp	_				Щ	_	4	\perp	\perp		1	\vdash
Drinking water		•	<u> </u>	-	4	-		•		-	•	•		1	_	_	1		•	-		-	-		_	\square	_	\downarrow	\perp	_	4	\perp	<u> </u>
Thermal oil		4	\dashv	+	+	-		_	\vdash	\dashv	4	4	-	4	+	+	-	\vdash	4	4	\dashv	4	_			\square	_	4	+	+	+	+	₩
Hot water Wash water		+	+	+	+	+		_	\vdash	\dashv	+	+	+	+	+	+	\vdash	\vdash	+	\dashv	\dashv	+	\dashv	\dashv	_	\dashv	+	+	+	+	+	+	\vdash
		- 1	- 1	- 1	- 1	1			1	- 1	- 1				1	1	1		- 1	- 1	- 1	- 1	- 1	- 1			- 1	- 1	- 1	- 1			

Waste water with faces		Ama-Drainer N	Ama-Drainer 4. / 5	Ama-Drainer 80, 100	Ama-Porter F / S	Rotex	MK / MKY	Amaclean	Ama-Drainer-Box Mini	Ama-Drainer-Box	Evamatic-Box N	mini-Compacta	Compacta	CK 800 Pump Station	CK 1000 Pump Station	Ama-Porter CK Pump Station	SRP	SRL	SRS	Amarox	Amarex N	Amarex KRT										
Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Halphy aggressive liquids Industrial service water Condensate Corrosve liquids Valuable liquids Fuels Cooling lubricant Cooling water Volatile liquids Fire-frighting water Seawater Golts Pharmacoutical fluids Fire-frighting water Corponic liquids Fire-frighting water Seawater Collaming spents Raw sludge Lubricants Grey water Swimming pool water Simming pool water Brine Feed water Spipping paints Freed water Spipping paints		bs					- 3	s =	_		-						-	_		Sd		-								\perp	\perp	\perp
Flammable liquids River, lake and groundwater Liquerfied gas Food and beverage production Gas-containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Halphy aggressive liquids Industrial service water Condensate Cornosive liquids Valuable liquids Fuels Coolants Cooling lubricant Cooling water Volatile liquids Fire-fighting water Seawater Golts Pharmaceutical fluids Pharmaceutical fluids Pharmaceutical fluids Rainwater / Swimming pool water General Rain Rain and Rain		틸					1	≘				_								E ■												
Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Highly aggressive liquids Industrial service water Cornorisve liquids Valuable liquids Fuels Coolants Cooling water Volatile liquids Fire-fighting water Seawater Golts Pharmaceutical fluids Pharmaceutical fluids Polymerising liquids Rainwater / Stormwater Genthermal water I	Aggressive liquids	er p					-	STG																								
Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Highly aggressive liquids Industrial service water Cornorisve liquids Valuable liquids Fuels Coolants Cooling water Volatile liquids Fire-fighting water Seawater Golts Pharmaceutical fluids Pharmaceutical fluids Polymerising liquids Rainwater / Stormwater Genthermal water I		vate			Ш		- 1	Ĕ												j										\perp	\perp	\perp
Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Highly aggressive liquids Industrial service water Cornorisve liquids Valuable liquids Fuels Coolants Cooling water Volatile liquids Fire-fighting water Seawater Golts Pharmaceutical fluids Pharmaceutical fluids Polymerising liquids Rainwater / Stormwater Genthermal water I	Activated sludge	e v					- 3	<u>م</u> _										Ш		e I		-								\perp	\perp	Ш.
Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Highly aggressive liquids Industrial service water Cornorisve liquids Valuable liquids Fuels Coolants Cooling water Volatile liquids Fire-fighting water Seawater Golts Pharmaceutical fluids Pharmaceutical fluids Polymerising liquids Rainwater / Stormwater Genthermal water I	Brackish water	vas						_age												lqis.										\perp	\perp	\perp
Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Highly aggressive liquids Industrial service water Cornorisve liquids Valuable liquids Fuels Coolants Cooling water Volatile liquids Fire-fighting water Seawater Golts Pharmaceutical fluids Pharmaceutical fluids Polymerising liquids Rainwater / Stormwater Genthermal water I		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				!	-	x							•			Ш		■ me		-	\perp	\perp	\perp	\perp	Ш	Щ	_	\perp	\perp	<u> </u>
Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Highly aggressive liquids Industrial service water Cornorisve liquids Valuable liquids Fuels Coolants Cooling water Volatile liquids Fire-fighting water Seawater Golts Pharmaceutical fluids Pharmaceutical fluids Polymerising liquids Rainwater / Stormwater Genthermal water I		ᇤ	\perp			4	- 2	s/ b	\perp	\perp								Ш		qns_	\perp		4	\perp	\perp	\perp	Ш	Щ		\perp	\perp	\perp
Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Highly aggressive liquids Industrial service water Cornorisve liquids Valuable liquids Fuels Coolants Cooling water Volatile liquids Fire-fighting water Seawater Golts Pharmaceutical fluids Pharmaceutical fluids Polymerising liquids Rainwater / Stormwater Genthermal water I		1 p	_	_		_	- 1	틸_	_	_	_								_	_	_		4	\perp	\perp	_	\sqcup		_	\perp	\bot	\perp
Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Highly aggressive liquids Industrial service water Cornorisve liquids Valuable liquids Fuels Coolants Cooling water Volatile liquids Fire-fighting water Seawater Golts Pharmaceutical fluids Pharmaceutical fluids Polymerising liquids Rainwater / Stormwater Genthermal water I		age	\perp	-	\square	4			4	-	_	_	<u> </u>	_	<u> </u>			\sqcup	4		+		\perp	\perp	_	-	\sqcup	\square	_	+	4	<u></u>
Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Highly aggressive liquids Industrial service water Condensate Corrosive liquids Valuable liquids Fuels Coalats Coalants Coaling ludricant Coaling water Seawater Ois Fire-fighting water Giltered service Geothermal water Refined and the service water Grey water Swimming pool water Geothermal refined and the service water Golic Grey water Grey water Geothermal refined and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Gorman and the service water Grey water Grey water Swimming pool water Grey water G		rain	\perp	+	Н	+	1	Ē—	+	+	_			_				\sqcup	4				+	+	+	+	\sqcup	\square	_	+	+	\vdash
River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Highly aggressive liquids Industrial service water Condensate Corolwse liquids Valuable liquids Fuels Coolants Cooling lubricant Cooling water Volatile liquids Fire-fighting water Solvents Seawater Oils Geawater Oils Geawater Oils Graymater Stormwater Cleaning agents Raw studge Lubricants Grey water Swimming pool water Brine Feed water Brine Feed water Dipping paints Brine Feed water Brine Feed water Dipping paints Fire-fighting paints Fire-fighting paints Fire-fighting apents Fire-fighting agents Fire			+	+	\sqcup	\perp	_	_	\perp	\perp	-	_		_				\sqcup	4		+	-	+	\perp	+	+	\sqcup	\square	_	+	+	_
Liquefied gas			+	+		+			+	+	-		<u> </u>	_	\vdash	\vdash		$\vdash \vdash$	\dashv		+-	 	+	+	+	+	\vdash	$\vdash \vdash$	_	+	+	+
Food and beverage production Gas containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Helghly aggressive liquids Industrial service water Condensate Corrosvie liquids Valuable liquids Fuels Cooling ubricant Cooling water Volatile liquids Fire-flighting water Solvents Seawater Oils Organic liquids Pharmaceutical fluids Pharmaceutical fluids Pharmaceutical fluids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints Brine Feed water Brine Feed water Dipping paints Brine Feed water Brine Feed water Dipping paints Brine Feed water Dipping paints Brine Feed water Dipping paints Brine Feed water Dipping paints Brine Feed water Dipping paints			1						+	+	-	\vdash	_	-	H	H		\vdash	\dashv	-	-		+	+	+	+	+	$\vdash \vdash$	+	+	+	\vdash
Gas-containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Holphy aggressive liquids Industrial service water Condensate Corrosive liquids Valuable liquids Fuels Cooling lubricant Cooling lubricant Cooling lubricant Cooling lubricant Gooling lubricant Cooling lubricant Gooling lubricant Gooling lubricant Gooling lubricant Gooling lubricant Cooling water Wolatile liquids Fire-fighting water Solvents Seawater Oils Pharmaceutical fluids Pharmaceutical fluids Rainwater / stormwater Gleaning agents Raw studge Lubricants Grey water Swimming pool water Brine Feed water Feed water Feed water Folipping paints			+	+		+	-		+	+	\vdash	-			-			\vdash	\dashv		+	-	+	+	+	+	\vdash	\vdash	_	+	+	+
Gast turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Highly aggressive liquids Industrial service water Condensate Corrosive liquids Fuels Coolants Cooling lubricant Cooling water Volatile liquids Fire-fighting water Seawater Oils Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Swimming pool water Fied water Swimming pool water Fied water Swimming pool water Fied water Swimming pool water Fied water Sping paints			+	+	\vdash	+	+	H	+	+	\vdash	⊬	H	-	H		H	\vdash	\dashv	١.		-	+	+	+	+	\vdash	\dashv	+	+	+	+
Filtered water Geothermal water Harmful liquids Toxic liquids Toxic liquids High-temperature hot water Heating water Heating water Highly aggressive liquids Industrial service water Condensate Corrosive liquids Valuable liquids Fuels Coolants Cooling ubricant Cooling water Volatie liquids Fire-fighting water Solivents Seawater Oils Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / stortwater Cleaning agents Raw studge Lubricants Grey water Swimming pod water Swimming pod water Brine Feed water Dipping paints			+	+	\vdash	+	-		+	+	\vdash	\vdash						\vdash	\dashv	-	-	-	+	+	+	+	\vdash	\dashv	+	+	+	+
Geothermal water Harmful liquids Toxic liquids High-temperature hot water Heating water Helphy aggressive liquids Industrial service water Condensate Corrosive liquids Valuable liquids Fuels Cooling lubricant Cooling water Volatile liquids Fire-fighting water Solvents Seawater Oils Organic liquids Pharmaceutical fluids Pharmaceutical fluids Pharmaceutical fluids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints Brine Feed water Dipping paints Brine Feed water Dipping paints			+	+	Н	+	+	\vdash	+	+	+	╁						\vdash	\dashv		+	-	+	+	+	+	\vdash	\dashv	+	+	+	+
Harmful liquids Toxic liquids High-temperature hot water Heating water Highly aggressive liquids Industrial service water Condensate Corrosive liquids Valuable liquids Valuable liquids Fuels Coolants Cooling water Volatile liquids Fire-fighting water Solvents Seawater Oils Pharmaceutical fluids Pharmaceutical fluids Pharmaceutical fluids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Gry water Swimming pool water Swimming pool water Swimming pool water Swimming pool water Brine Feed water Dipping paints			+	+	\vdash	+	+		+	+	\vdash	\vdash			\vdash		\vdash	\vdash	\dashv		+	-	+	+	+	+	\vdash	\dashv	+	+	+	+
Toxic liquids High-temperature hot water Heating water Highly aggressive liquids Industrial service water Condensate Corrosive liquids Valuable liquids Fuels Coolants Cooling lubricant Cooling water Volatile liquids Fire-fighting water Solvents Seawater Oils Organic liquids Pharmaceutical fluids Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Swimming pool water Swimming pool water Swimming pool water Brine Feed water Dipping paints			+	+	\vdash	\dashv	-		+	+	\vdash	\vdash						\vdash	\dashv		+		+	+	+	+	\vdash	\dashv		+	+	+
High-temperature hot water Heating water Highly aggressive liquids Industrial service water Condensate Corrosvie liquids Valuable liquids Fuels Cooling lubricant Cooling lubricant Cooling lubricant Cooling water Volatile liquids Fire-fighting water Solvents Sewater Oils Organic liquids Pharmaceutical fluids Pharmaceutical fluids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints			+	+	\Box	\dashv	-		+	+		\vdash						\Box	\dashv		+		\dashv	+	+	+	\vdash	\dashv	+	+	+	+
Heating water Highly aggressive liquids Industrial service water Condensate Corrosive liquids Valuable liquids Fuels Cooling tubricant Cooling water Volatile liquids Fire-fighting water Solvents Seawater Oils Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / Stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Swimming pool water Feed water Dipping paints Fire-Feed water Dipping paints			\top	+	Н	\dashv	-		+	+								Н	-		+		\top	+	+	+	\vdash	Н		+	+	+
Highly aggressive liquids Industrial service water Condensate Corrosive liquids Valuable liquids Fuels Coolants Cooling lubricant Cooling water Volatile liquids Fire-fighting water Solvents Seawater Oils Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Swimming pool water Brine Feed water Dipping paints			\top	\top	\Box	\dashv			\top	\top		\vdash						Н	\exists		\top		\dashv	\top	\top	+	\vdash	\Box	\top	+	+	+
Industrial service water Condensate Corrosive liquids Valuable liquids Fuels Coling lubricant Cooling water Volatile liquids Fire-fighting water Solvents Seawater Ois Organic liquids Pharmaceutical fluids Pharmaceutical fluids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Feed water Dipping paints			\top	\top	\Box	\dashv			\top	\dagger	\vdash	\vdash						\Box	\exists		\top		\dashv	\top	\top	\top	\vdash	\Box	\dashv	+	+	+
Corrosive liquids Valuable liquids Fuels Coolants Cooling lubricant Cooling water Volatile liquids Fire-fighting water Solvents Seawater Oils Organic liquids Pharmaceutical fluids Pharmaceutical fluids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints					П				\top	\top	\vdash				Г		Т	П	╗				\top	\top	\top	\top	\vdash	П	\top	\top	\top	\top
Valuable liquids Fuels Coolants Cooling lubricant Cooling water Volatile liquids Fire-fighting water Solvents Seawater Oils Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints	Condensate		Ť		П				Ť									П			T		T			T	\Box			\top	T	
Fuels Coolants Cooling lubricant Cooling water Volatile liquids Fire-fighting water Solvents Seawater Oils Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Swimming pool water Feed water Dipping paints	Corrosive liquids		T		П				T									П			T					T	П			T	T	
Coolants Cooling lubricant Cooling water Volatile liquids Fire-fighting water Solvents Seawater Oils Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Feed water Dipping paints	Valuable liquids																															
Cooling lubricant Cooling water Volatile liquids Fire-fighting water Solvents Seawater Oils Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Swimming pool water Feed water Dipping paints	Fuels																															
Cooling water Volatile liquids Fire-fighting water Solvents Seawater Oils Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints	Coolants																															
Volatile liquids Fire-fighting water Solvents Seawater Oils Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints					Ш																									\perp	\perp	
Fire-fighting water Solvents Seawater Oils Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints																		Ш												\perp	\perp	\perp
Solvents Seawater Oils Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints			_		Ш	_			\perp	\perp								Ш			\perp		_	\perp	\perp	\perp				\perp	\perp	\perp
Seawater Oils Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints			1	\perp	Ш	_			\perp	\perp	\perp							Ш			\perp		\perp	\perp	\perp	\perp	Ш		_	\perp	\perp	\perp
Oils Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints			1	1	Ш	4	_		\perp	1	_	\vdash		_		\sqcup		\sqcup	4		\perp	_	\perp	\perp	\perp	\perp	\sqcup	Щ	\perp	\perp	4	1
Organic liquids Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints			+	+	\sqcup	_			\perp	-	-							\sqcup	4		1		+	\perp	\perp	+	\sqcup	\square	_	+	+	_
Pharmaceutical fluids Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints			+	+	$\vdash \vdash$				+	-	-	-	<u> </u>	_	\vdash		_	$\vdash \vdash$	\dashv		+	-	+	+	+	-	\vdash	$\vdash \vdash$	-	+	+	+
Polymerising liquids Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints			+	+	$\vdash \vdash$	+	-		+	+	-	\vdash	\vdash	-	\vdash	H	H	\vdash	-		+	\vdash	+	+	+	+	\vdash	\dashv	+	+	+	+
Rainwater / stormwater Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints			+	+	$\vdash \vdash$	+			+	+	-	\vdash	\vdash					H	\dashv		+	\vdash	+	+	+	+	₩	$\vdash \vdash$	+	+	+	+
Cleaning agents Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints			+	+	\vdash	+	-		+	+	-		-		\vdash	H		\vdash	\dashv		+	-	+	+	+	+	₩	\vdash	+	+	+	+
Raw sludge Lubricants Grey water Swimming pool water Brine Feed water Dipping paints			+	+	\vdash	+	-		+	+	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash		\vdash	\dashv		+		+	+	+	+	\vdash	\dashv	+	+	+	+
Lubricants Grey water Swimming pool water Brine Feed water Dipping paints			+	+	\vdash	+			+	+	+	\vdash	\vdash		\vdash			\vdash	\dashv				+	+	+	+	\forall	\dashv	+	+	+	+
Grey water Swimming pool water Brine Feed water Dipping paints			+	+	\vdash	\dashv			+	+	\vdash	\vdash		\vdash		Н		\vdash	\dashv	-	+-	-	+	+	+	+	+	\dashv	+	+	+	\vdash
Swimming pool water Brine Feed water Dipping paints																							\dashv	+	+	+	\forall	\dashv	+	+	+	\vdash
Brine Feed water Dipping paints			+	Ť	Ħ	7			1	Ť	T	-	-	Ī	Ī		Ī	H	\exists		+-	Ť	\top	\top	\top	\dagger	\forall	H	\top	+	+	\top
Dipping paints			\dagger		П	\dashv						Т	Г		Г	П	Т	\sqcap			\top		\dashv	\top	\top		\Box	\Box	\top	\top	\top	\vdash
	Feed water																	\Box									\Box				7	\Box
Drinking water																															I	
DITINKING WALES	Drinking water																					•									I	
Thermal oil	Thermal oil																							\perp						\perp	\perp	\Box
Hot water Hot water					Ш													Ш					Ţ	\perp						Ţ	L	Ļ
Wash water ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	Wash water																				<u> </u>									\perp	\perp	\perp

	2	Amacan K	Amacan P	Alliacaii 5	Amamix				Sewatec	Sewatec SPN	Sewabioc KWP	KWP-Bloc		WBC	LSA-S	M-CC-M	LCC-K) IBC	FGD	МНБ	됨	MDX	ΣW	HVF		Etaprime L	Etaprime B	EZ B/L	ΑU	AU Monobloc		
Waste water with faeces	Ses	_	\perp	viinit	2 -		_	fluids	\vdash		_		■ Sd		Ш	_	\perp	\perp	╙	_				_	sdu	\dashv	\dashv	\perp	_	\perp	_	\perp
Waste water without faeces	벌	+	\perp	_ = =	=								_ =	_		_	4	_	╄	_				_	bun.	\dashv	\dashv	\rightarrow	•	_	+	\perp
Aggressive liquids	arge	+	+	_ i.c		\vdash	Ш	den	\vdash	+	-		<u> </u>	_		- 1	4	_	+	_			\Box	_	ng		•	\dashv	•	-	+	+
Inorganic liquids Activated sludge	Sche	-	+	- 4	<u> </u>	\vdash		solids-laden		+	+	+	-Su	_	\vdash	+	+	+	╀	-				\dashv	Self-priming pumps	\dashv	\dashv	\dashv	\dashv	+	+	+
Brackish water	١١	-	+	- 2		+	-	olid		+	•	+	-	H	\vdash	+	+	+	+	\vdash		H	\dashv	-	를						+	+
Service water	ps i			+	3 -	+	\vdash		\vdash	+	١.			H	\vdash	+	+	+	+	\vdash			\vdash	\dashv	S	-	-	-	-	-	+	+
Distillate			-	- V	3	+	\vdash	ps f	\vdash	+	+	+	-	H	\vdash	+	+	+	+				\dashv	\dashv		-	-	+	\dashv	+	+	+
Slurries	Submersible pumps in discharge tubes	+	+	Mixers / anitators / tank cleaning	3	+	\vdash	Pumps for	\vdash	+	1															\dashv	+	\dashv	\dashv	+	+	+
Explosive liquids	sib	+	+	7 30	5	+	\forall	_	\vdash	+	+	+		Ē	H	7	+	-	T	┌	_	Ē	-	\exists		+	+	+	+	+	+	+
Digested sludge	me	+	+	- V	2	\top	\sqcap				1	\dagger			\sqcap	\dashv	\dagger	\top	T	\vdash		П	\dashv	\dashv		\dashv	\dashv	\dashv	\dashv	\top	\top	+
Solids (ore, sand, gravel, ash)	Sub	\top	\top	- N	<u> </u>	\top	\Box		\sqcap	+	_			•										╗		\dashv	\dashv	\top	\dashv	\top	\top	+
Flammable liquids		\top	\top			\top	П		\sqcap	\top	\uparrow	\top			\Box	\top	\top	\top	T				\Box			\dashv	\forall	\dashv	\dashv	\top	\top	\top
River, lake and groundwater							П																									Ţ
Liquefied gas											I	Ι					Ī	I								J	J					I
Food and beverage production		\Box																														\perp
Gas-containing liquids			\perp				Ш																									
Gas turbine fuels		4	\perp		L	\perp	Ш		Ш			\perp					\perp	\perp	_							_	_	4		\perp	4	4
Filtered water		4	\perp		L	\perp	Ш			\perp	\perp	\perp			Щ	4	4	_	\perp					_	L.	_	4		_	\downarrow	_	\perp
Geothermal water		\downarrow	\perp		L	\perp	Ш			\perp	\perp	\perp				4	_	_								\perp	_	\dashv	_	\perp	4	\perp
Harmful liquids		\downarrow	\perp		L	\perp	Ш		\sqcup	4	4	\perp		L		_	\perp	\perp	_	_				_	ŀ	\dashv	\dashv	\dashv	\dashv	\dashv	4	\perp
Toxic liquids	-	\perp	\perp		L	\perp	Ш		\vdash	\perp	\perp	\perp		_	Ш	_	4	_	_	_				_	-	\dashv	\dashv	\dashv	4	\dashv	\perp	\perp
High-temperature hot water	-	\perp	\perp		L	\perp	Ш		\vdash	\perp	\perp	\bot	_	_		_	\perp		-					_		\dashv	\dashv	\dashv	4	\dashv	\perp	\perp
Heating water	-	+	+	4		₩	Ш		\vdash	_	+	+	_	_	\square	_	+	_	+	_			\Box	4	-	\dashv	\dashv	\dashv	\dashv	+	+	+
Highly aggressive liquids	┦	_	\perp		L	\vdash	Ш		\vdash	+	+	_		L	\vdash	+	+	+	-	-			-	_	-	\dashv	\dashv	\dashv	4	+	+	+
Industrial service water			- -	4	H	+	Н		\vdash	+	-		_	H		+	+	+	+	-				-	H	\dashv	\dashv	\dashv	\dashv	+	+	+
Condensate Corrosive liquids	┨┼	+	+	\dashv	\vdash	+	Н		\vdash	+	+-		_	H	\vdash		+	+		\vdash			\vdash	-	-	-	-	\dashv	\dashv	+	+	+
Valuable liquids	╂	+	+	-		+	\vdash		\vdash	+	+*	+	-	H	\vdash	-	+	+	-	\vdash			\dashv	-	-	\dashv	\dashv	\dashv	\dashv	+	+	+
Fuels	╁	+	+	-		+	\vdash		\vdash	+	+	+	_	⊢	\vdash	+	+	+	+	\vdash				\dashv		+	+	+	\dashv	+	+	+
Coolants	1 -	+	+	-		+	Н			+	+	+	-	H	\vdash	+	+	+	╁	\vdash	H		\dashv	\dashv	-	+	+	+	\dashv	+	+	+
Cooling lubricant	1	+	+	-		+	\vdash		\vdash	+	+	+	-	H	\vdash	+	+	+	+	\vdash			\dashv	-		+	+	+	\dashv	+	+	+
Cooling water	1 -	+	+	-		+	\forall			+	١.			H	H	_	+	+	+					\dashv				+			+	+
Volatile liquids		+	+			+	\forall		\vdash	+	+	+			\vdash	+	+	+	+	\vdash		Н	\dashv	-		_	_	+	_	_	+	+
Fire-fighting water		+	+			+	\forall		\vdash	+	+	+			\dashv	+	+	+	+	\vdash		Н	\dashv	-				+			+	+
Solvents		+	+			T	Н		\sqcap	+	+	+			H	+	\dagger	+	\dagger	\vdash		П	\dashv	\dashv		7	Ŧ	+	\dashv	7	+	+
Seawater		\top	\top			\top	П		\sqcap	\top	1			Г	\Box	\top	\dagger	\top	T			П	\Box	\neg							\top	+
Oils			_			Π	П		\Box							_									-					\Box		_
Organic liquids												Ι																				I
Pharmaceutical fluids		\perp									I	Γ					\perp										\Box		\Box	\perp		\perp
Polymerising liquids		Ţ	\perp				Ш		Ш								Ţ										I		\Box	\perp		\perp
Rainwater / stormwater	_					\perp	\sqcup			•	•	1		L	Щ				L		\Box	Ш	Щ			[\perp	[_[\perp	\perp	\perp
Cleaning agents		\perp	\perp		L	\perp	\sqcup		\sqcup	\perp	1	\perp		L	Ш	_	\perp	\perp	\perp			Щ		_		•	╝	4	\perp	\perp	\perp	\perp
Raw sludge	-	4	\perp			\perp	\sqcup			_	1	+		_	Щ	4	\downarrow	_	\vdash			Щ	Ш	_	_	4	4	\dashv	\dashv	\dashv	\perp	\perp
Lubricants	-	+	+			+	\sqcup		H	_	+	+		_	\square	_	_	+	\vdash	-		Щ	\sqsubseteq	4	-	\dashv	\dashv	\dashv	ᆜ	_	+	+
Grey water	-	+	+			+	\sqcup					-		_	$\vdash \vdash$	- 1	+	-	+	-				4	-	_	_	+	•	-	+	+
Swimming pool water	-	+	+	-		+	\vdash		\vdash	+	+	+		-	$\vdash \vdash$	+	+	+	\vdash	\vdash		H	\dashv	-			-	\dashv	\dashv	+	+	+
Brine Feed water	-	+	+	-		+	\vdash		\vdash	+	+	1	•	-	\vdash	+	+	+	+	\vdash		H	\dashv	\dashv	ŀ	-	\rightarrow		\dashv	+	+	+
Dipping paints	-	+	+			+	H		\vdash	+	+	+		-	\vdash	+	+	+	+	\vdash		\vdash	\dashv	\dashv	-	\dashv	+	-	\dashv	+	+	+
Drinking water		+				+	\vdash		\vdash	+	+	+		H	\dashv	+	+	+	+	\vdash	H	H	\dashv	-			+	+	+	+	+	+
		- +'	-+-	-		+	\vdash		\vdash	+	+	+			\vdash	+	+	+	+	\vdash	Н	Н	\dashv	-		-	- +	+	+	+	+	+
Thermal oil					-	1	1 /		4 I	1								- 1	1	1				- 17		- 1	- 1	- 1			\rightarrow	+
Thermal oil Hot water		\top	\top							\neg	T,				\Box		\dashv									\neg						

	77 707	UPAchrom 100 CN	UPA 150 C	UPA 200, 200B, 250C	UPA 300, 350	UPA 400-850	UPAD	B Pump	Comeo	Movitec H(S)I	Movitec	Movitec VCI	Multitec	Omega	RDLO	RDLP	Vitachrom	Vitacast/Vitacast Bloc	Vitaprime	Vitastage	Vitalobe	CHTA / CHTC / CHTD	HGB / HGC / HGD	HGI	HGM	YNK LUV / LUVA	WKTB	
Waste water with faece	S S						3	3	sd				DS	2			es					ds	\Box		\Box	\perp		
Waste water without faece	_ = -	\perp	\perp	Ш		_			sdwnd	\perp		Щ	Axially split pumps		Ш		industries	\perp				islands	\perp	Ш	\perp	\perp	Ш	
Aggressive liquide	<u>a</u>	\perp		Ш		_		<u>u</u>	e e			Щ					ng_				_		\perp	Ш	4		Ш	
Inorganic liquid		\perp	-	Ш					High-pressure	-		\Box	ds v					\perp			_	conventional	\perp	Ш	\dashv	\perp	\sqcup	+
Activated sludge	j od –	\perp	_	Ш		_	_		-pre		Ш	\Box	<u> </u>	_		_	pharmaceutical	\perp		_	_	- lent	\perp	Ш	\dashv	+	\sqcup	+
Brackish water	r e l	\perp	+	Ш		_	_		ig	-		\vdash			-	-	lace	+			_	0	\vdash	Ш	+	+	\vdash	+
Service water	risi							<u> </u>	┦┸┞	+		_	_	▝		•	arm	+		_	_		+	Ш	+	+	\vdash	+
Distillate		+	+	\vdash	-	_	-	_		-				Н	\vdash	-	<u>d</u> _	+		_	_	station	+	Н	+	+	\vdash	+
Slurrie: Explosive liquid:	N	+	+	\vdash	-	+	-	_		+		\dashv	_		\vdash	\exists	and	+		_	\dashv		┾	\vdash	+	+	\vdash	+
		+	+	\vdash	\dashv	+	-	_	+	+	H	\dashv	+	\vdash	\vdash	-	ge	+		_	\dashv	power	-	Н	+	+	\vdash	+
Digested sludge Solids (ore, sand, gravel, ash		+	+	\vdash	Н	+				+	\vdash	\dashv		\vdash	\vdash	-	beverage and	+	\vdash	_	-	or p	+	\vdash	+	+	\vdash	+
Solids (ore, sand, gravel, asn		+	+	\vdash	$\vdash \vdash$	+				+	\vdash	\dashv			\vdash	- [.	pe/	+		_	-	Pumps for	+	\vdash	+	+	\vdash	+
River, lake and groundwater	_						-			+	Н	\dashv					food,	+	\vdash	_	\dashv	립	+	\vdash	+	+	++	+
Liquefied gas		-	+	-	-	-1	-	-		+	\vdash	-		-	-	-	ا فِ	+		_	\dashv	۲ ⊢	+	\vdash	+	+	\vdash	+
Food and beverage production		+	+	\vdash	\dashv	\dashv	+	-		+		\dashv	-			-	for the						+		+	+	++	+
Gas-containing liquid	_	+	+	Н	\dashv	\dashv	-	_		+		\dashv			\vdash	_,	<u>-</u> و	+-	-	_	-1		+	\vdash	+	+	+	+
Gas turbine fuel:		+	+		\dashv	\dashv	-			+	\Box	\dashv			\vdash		nps	+		_	\dashv			\Box	+	+	\forall	+
Filtered water	_	+	†	Н	\exists					+		\vdash					bu -	+			\exists		╁	П	\top	\top	\forall	\dashv
Geothermal water	_	\top	\top	П	\Box	\top				\top	П	\rightarrow			H	_	딜	$^{+}$	Т		\neg		+	П	\top	\top	\forall	+
Harmful liquid		\top										\Box				-	Hygienic pumps						\top		\top	\top	\Box	\top
Toxic liquid:	_	\top		П								\Box			П		Į.	\top			\neg		\top	П	\top		\Box	\neg
High-temperature hot water	r			П									•														\Box	\top
Heating water	r				T					Ť		ΠÌ	-										T	П			П	
Highly aggressive liquide	5																											
Industrial service water	r I												-															
Condensate	2												-			-												
Corrosive liquid	S			Ш																			\perp			\perp	Ш	
Valuable liquid		\perp																					Ļ				Ш	
Fuel	_	\perp	\perp	Ш		_				\perp	Ш	Щ	-		Ш			\perp			_		\perp	Ш	_	\perp	Ш	_
Coolants		\perp		Ш							Ш		_										\perp	Ш	4		Ш	
Cooling lubrican		\perp	\perp	Ш		\perp	4			_			_			4		\perp			_		\perp	Ш	\dashv	\perp	\sqcup	_
Cooling water				囯			-	_					-	╚		•		\perp		_	_		\perp	Ш	\dashv	\perp	\sqcup	_
Volatile liquid	_	\perp		Ш		_		_				\Box	_					\perp			_		\perp	Ш	\dashv	\perp	\sqcup	\perp
Fire-fighting water	_	1				\dashv	4	-		-		_	_			4	-	+		_			+	Ш	+	+	\vdash	+
Solvents		+	+-			_				+	\vdash	\rightarrow						+	\vdash	_	-		+	\vdash	+	+	\vdash	+
Seawate		+						-		+	\vdash					-		+		_	-		+	\vdash	+	+	\dashv	+
Organic liquid:	_	+	+	$\vdash\vdash$	$\vdash \vdash$	+				+	\vdash	_			\vdash	-		+	\vdash	_	-		+	\vdash	+	+	\dashv	+
Pharmaceutical fluid:		+	+	\vdash	Н	+				+	\vdash	\dashv			H	-[+	\vdash	+	+	+	+
Polymerising liquid:		+	+	\vdash	Н	+				+	Н	\dashv			\vdash	-[•	+	-	_	-1		+	\vdash	+	+	\forall	+
Rainwater / stormwater	_	+	+	Н	\dashv	\dashv				+	Н	\dashv			H			+	Н	_	\dashv		+	\forall	+	+	\forall	+
Cleaning agents		+	+	\Box	Н	\dashv					Н	\vdash			\forall			\top	Н		\neg		+	\Box	+	+	\forall	+
Raw sludge			†	\Box	\exists	\top				1	П	\sqcap			\Box			\top					\dagger	Н	\top	+	\forall	\top
Lubricant			\top	П	П	\top					П				\Box			\top						\Box	\top	\top	\Box	\top
Grey water	_																								\Box			
Swimming pool water	r		I							\Box								\perp							I	I		
Brine												Ш			Ш								\perp	Ш	\perp			
Feed water				\square	Ш						Ш	\Box	•														Ш	
Dipping paints		\perp	\perp	Ш	Ш					\perp	Ш	Ш			Ц			\perp					\perp	Ш	\perp	\perp	Ш	
Drinking water	_					•		_	▋							•	Ŀ						\perp	Ш	\dashv	\perp	\sqcup	\perp
Thermal oi		\perp	\perp	Ш	Ц	\perp				\perp	\sqcup	\sqcup			\sqcup			\perp			_		\perp	\sqcup	\dashv	\perp	\sqcup	\perp
Hot water		+	\perp	\vdash	Щ	+		_		+	H	-		_		_[+	\vdash	_	_		+	\sqcup	\dashv	+	\vdash	+
Wash water	r l																						\perp		\perp	\bot	\perp	

	Z / BNZ																									umpDrive 2 Eco	-			
	SEZ / SEZT / PHZ / PNZ	SNW / PNW	Beveron	SPY		RER PCD	RIIV	PSR	RHD	LUV Nuclear	RHM	KVM 0	RVR	RVT		RPH-RO	HGM-RO	Malinecho	RC / RCV		EDS	DU / EU	L d	KSB SuPremE	KSB UMA-S	PumpDrive 2/PumpDrive 2 Eco	PumpDrive R		PumpMeter	KSB Guard
Waste water with faeces	ds				ns										Sis			SQ		ns			es		5	us •		Sis		
Waste water without faeces	islands				Ę										mo			samna		Fire-fighting systems			Drives		1	systems		and diagnosis		
Aggressive liquids	al is				sta										SO S					y sys				\perp		1 sy:		diag		
Inorganic liquids	ion				Wer										erse			displacement		ting				•		Variable speed		p pc		
Activated sludge	ent				9										le Š			la cer		igh					1	Sp =		gar		
Brackish water) NC				ear										þ			■ las		re-f					4	aple		Monitoring		
Service water	ĕ ■														ou			0		证						Ē		ite		
Distillate	tio				or r										nat			i±i								-		Mor		
Slurries	power station conventional				Pumps for nuclear power stations				\Box						sali			Positive					_	•						
Explosive liquids	We			Ш	E L				\sqcup						de.									•			-		\square	
Digested sludge	od .	\perp		Ш	_		\perp	\perp	Ш	_	\perp		\perp	\perp	Pumps for desalination by reverse osmosis									■		•	-		Ш	
Solids (ore, sand, gravel, ash)	Pumps for	\perp		Ш		\perp	\perp	\perp	Ш		\perp	\perp	\perp	\perp	nps								_	•		•	-		Ш	\perp
Flammable liquids	nps	\perp		Ш			\perp	_	Ш		\perp		\perp	\perp	Pur									•		•			Ш	
River, lake and groundwater	P ■						\perp				_	4	\perp										_	_			_			
Liquefied gas		1		Ш			4		Ш		4	\perp	\perp						L					=		-	_		Ш	\perp
Food and beverage production		\perp	_	Ш	_	_	4	_	Ш	_	4	4	4	_		Ш	\perp		L				4	•	4		-		\square	
Gas-containing liquids		_		Ш							_	_											_	4					\square	
Gas turbine fuels		_		Ш	-		_	_		_	_	4	_	_		Ш			L				_	4	4		_		_	\dashv
Filtered water		_	_	Ш	_	_	_	_	Ш	_	_	4	_	_			\perp		_				4	1	4					_
Geothermal water		-		Ш			_	_			4	_	\perp	_					L				_	\perp	4		-		\dashv	
Harmful liquids	\bot	\perp	_	Ш	-	_	_	-		_	_	\perp	_	_					L				-	\perp	4		-		\dashv	
Toxic liquids		\perp	_	Ш	_		_	-		_	4	4	\perp	_			_		_					•	4	-	+		\dashv	
High-temperature hot water		+	_	Ш	-	_	_	+		_	_	+	+	-		Н			L					1	4	-	+			
Heating water	-	\perp	_	Ш	-	_	_	\perp	\square	_	\perp	4	\perp	+		Н		4	L					•	4	•				
Highly aggressive liquids		+	<u> </u>		_	_	+	+	\vdash	\dashv	+	+	+	+		Н		-	L								-	-	_	
Industrial service water		-	-		-	_	-	+		_	-	+	-	-	-	Н		-	H	-				_	- 1		+	-		_
Condensate	\vdash	+	-		-	_	+	+	H	\dashv	\dashv	+	+	+	-	H	\vdash	-	-					4	4	-		-	\dashv	-
Corrosive liquids	\vdash	+	\vdash	Н	-	_	+	+	\vdash	\dashv	+	+	+	+		Н	\vdash	-	H					4	4		+=	1	\dashv	-
Valuable liquids Fuels	\vdash	+	\vdash	Н	-	_	+	+	\vdash	\dashv	\dashv	+	+	+	-	H		-	H				_		4		-	-	\dashv	-
Coolants	\vdash	+	-	\vdash	-		-		H						-	\vdash	+	-	-						-	H	+	+ -	\dashv	-
Cooling lubricant	+	+	-	Н	-					-	-		-	-	-	Н	-	-	\vdash						4		_	-	\dashv	•
Cooling water					-	_	+	+	\vdash	\dashv	\dashv	٠.	-		-	Н		-	H				l l	-		-	-			-
Volatile liquids	•	-	-	-	-	+	+	+	\vdash	\dashv	+	+	-	+		Н	\vdash	-	⊩		_			- '	-				-	-
Fire-fighting water		+	\vdash	\vdash	-	+	+	+	\vdash	\dashv	\dashv	+	+	+		Н		-	H		_			-			+			-
Solvents		+		Н	-		+	+		\dashv	+	+	+	+		Н		-	H		-		-	-+-	-	_	+-			
Seawater				Н	-	+	+	+	H	\dashv	\pm	+	+	+	-				┢		_			+			+		\dashv	
Oils		+-	┌	Н	-				\vdash		\dashv	+				F	_							+	-					
Organic liquids		+	\vdash	Н		+	\top	+	\Box	\dashv	\dashv	+	\top	\top			\vdash												\exists	
Pharmaceutical fluids		\top		Н		\top	\top		\Box	\dashv	+	+	\top	\top			\vdash							+			† <u> </u>		\dashv	
Polymerising liquids		\top	T	Н		+	\top	\dagger	\Box	\dashv	+	+	\top	\top										•					\exists	
Rainwater / stormwater			-	П		\top	\top	\top	\Box	\dashv	\dashv	\top	\top	\top			\top							=			+		\dashv	
Cleaning agents			Ĺ	П			T		\Box	\dashv	\top	\dashv		1										•			\rightarrow			
Raw sludge		Ť		П					\Box	\neg	\neg	\top											_	•			+		\exists	
Lubricants									\Box	\neg	\neg												1	-			_		\neg	
Grey water		\top				\top			\Box	\dashv	\neg	\neg											1	•			_		\neg	
Swimming pool water																								\top			Ì			
Brine		Ι												Τ									Ī	•						
Feed water																							ī	1						
Dipping paints																							Ī							
Drinking water									\Box			$\perp \Gamma$							L				_	-						
Thermal oil							\Box		Ш		\perp																		\Box	
Hot water		L		Ш					Ш			Щ												•				1		
Wash water		1	1			- 1 -	- 1	1	1 T	T	- 1	- 1 -	1.7	1 -										- 17						

	Thomas one will	Callo-Therm MC		Calio-Therm S	J -: 11-1	Calio	Calio Z		Etaline L	Etaline DL Etaline	Etaline Z	Etaline-R	IIN	ILNC	Megaline	- Ctanorem	Etanorm Etanorm D	Etabloc	Etachrom B	Etachrom L	Etanorm V	Meganorm	Megabloc						
Aquaculture Spray irrigation	Drinking water circulators, fixed speed	+	peed	H	peed	+	\vdash	sdwnd		+	\vdash				_	sdwnd					-				+	+	+	\vdash	\dashv
Mining	ed sk		circulators, variable speed		Circulators, variable speed			e bn												Ī									士
General irrigation	, ţi	+	ariak	Ш	ariak	\perp	1	In-line	\perp	\perp	_				_ -	ad l	_	•	-		-			\dashv	\dashv	4	_	\square	\dashv
Chemical industry Dock facilities	ators	+	rs, ve	Н	rs, ve	+	╁		+	+	+	H			+	9 9	1	+	+	+	┢	H	_	\dashv	+	+	+	\vdash	\dashv
Drainage	12 -	†	lato	Н	lato						\vdash		-	\vdash		standardised / close-coupled	\top		†		\vdash				+				\dashv
Pressure boosting	er ci		i.c		irc) peg													
Sludge thickening	wat	+	ter	Ш		\perp		-		\perp	-				_ -	ardis	_	_	1					\perp	\perp	_	_	Ш	\dashv
Disposal Dewatering	ing	+	Drinking water	\mathbb{H}	_	+	\vdash	-	-	+	\vdash				-	and			+	H			_	\dashv	+	+	+-	\vdash	\dashv
Descaling units	- ij	+	- ki	Н		+		-	\dashv	+	+		-	-	_ ;	<u>-</u> ۲	+	+	-	T	Ι-		_	\dashv	+	+	+	\vdash	+
District heating			P.																										
Solids transport		Ļ		Ц		1	F		\perp	1	Ļ			ĻĪ				_	1	L	F	L	Ļ	$\dashv \exists$	4	1	+	Ц	4
Fire-fighting systems Geothermal energy		+		Н		+	+		+	+	+				_				+	+	\vdash	-		+	+	+	+	\vdash	+
Drawdown of groundwater levels		+		Н	_	+	\vdash	-	\dashv	+	+	Н		H	-	ŀ	+	-	+	+	╁		_	\dashv	+	+	+	\forall	+
Maintenance of groundwater levels		Ť																	İ										士
Domestic water supply	•					\perp				\perp									I									П	\Box
Flood control / coast protection (stormwater)		+		Н	_	-	-	-		+	\vdash				_	_	+		\perp	-	-		_	\dashv	+	-	-	\square	\dashv
Homogenisation Industrial recirculation systems		1						-							-	ı.	+				╁		_	\dashv	+	+	+	\vdash	\dashv
Nuclear power stations		+	-	Н	-		F	-	-	+-	┢	-	-	-	-	F	+	+-	+	Ħ	\vdash		_	\dashv	+	+	+	\vdash	+
Boiler feed applications																			İ										
Boiler recirculation		•								\perp									I						\Box			П	\Box
Waste water treatment plants		+		Ы	_		<u> </u>	-	_	_	 	_							-	+-		L	L	\dashv	+	-	-	\square	\dashv
Air-conditioning systems Condensate transport		-		▝	-		-	-			-	-	H		-	ŀ	#		-	-	╁			\dashv	+	+	+	\vdash	\dashv
Cooling circuits		1						-					Ē	-		_		_	_	-			Ē	\dashv	+	+	+	\forall	+
Paint shops																													
Food and beverage industry		4		Ш					- 1	1	-				_		•	_	_					\dashv	\perp			Ш	\dashv
Seawater desalination / reverse osmosis Mixing	+	+	-	Н	_	+	\vdash	-	_	+	\vdash				4	H			+	\vdash	-	-		\dashv	+	+	+	\vdash	\dashv
Offshore platforms		+		Н	_	+	\vdash	-	+	+	+	\vdash			-		+	+	+	+	╁		_	\dashv	+	+	+	\vdash	\dashv
Paper and pulp industry		†		П			T				\dagger						\top		†		T				\top			П	\top
Petrochemical industry																													
Pharmaceutical industry		\perp	_	Н	_	_		-		_	-				_		_		\perp	-	-			\dashv	\perp	-	-	Ш	\dashv
Pipelines and tank farms Refineries	+	+	-	Н	-	+	\vdash	-	-	+	\vdash			\vdash	-	-	+	-	+	\vdash	-	-	•	\dashv	+	+	+	\vdash	+
Flue gas desulphurisation		+	-	Н	-		+	-		+	+		H	\vdash	\exists		+		+	+	╁		_	\dashv	+	+	+	\Box	+
Rainwater harvesting		\dagger		П							T			П	-		\top		†			•			\top			П	\top
Cleaning of stormwater tanks / storage sewers		\perp		Ш					T	\perp	\perp						\perp	\Box	\perp					\Box	\bot			П	\bot
Recirculation Dredging		+		H		+	+	-	\perp	+	-						+	+	+	-	-	-		\dashv	+	+	-	\vdash	\dashv
Shipbuilding		+		Н		+	+		+	+	+	\vdash	-		-		+	+	+	+	+	\vdash	_	\dashv	+	+	+	\vdash	+
Sludge disposal		+		Н		+	\dagger			+	+	Н	_				+	+	$^{+}$	+	\vdash		\vdash	\dashv	+	+	+	\Box	+
Sludge processing		1																	I						\perp				1
Snow-making systems		Ţ		Ц			F		\Box	1	F			Ц			_[_	Ļ	F	L	L		\Box	_[1	1	Ц	4
Heavy oil and coal upgrading Swimming pools		+		$\vdash \vdash$		+	\vdash		+	+	\vdash					-	+-		1-	-	+	_	_	\dashv	+	+	+	\vdash	\dashv
Solar thermal energy systems		+		Н				-	+	+	+	\vdash			-	ŀ	+				\vdash	\vdash	\vdash	\dashv	+	+	+	\forall	+
Fountains		\dagger		Н		+	Ť			\top	\dagger						\top	\dagger	†		\dagger			\dashv	+	+	\top	\Box	+
Keeping in suspension		I																	I						\blacksquare			Ш	\Box
Thermal oil circulation		+		\square		+	-		_	+	-		L				+	+	+	-	-	_		\dashv	\perp	+	-	\sqcup	\dashv
Draining of pits, shafts, etc. Process engineering		+		Н		+	+	-	+	+	+	\vdash			-		+	+	+	+	\vdash	\vdash	_	\dashv	+	+	+	\dashv	+
Heat recovery systems				П													+	+	+	+	+	•		\dashv	+	+	+	\forall	+
Hot-water heating systems					_		+	-	_		+	•		\rightarrow		Ī										土			J
Washing plants		Ţ		Щ			L		\perp	\perp	L			-	•		_[_	1	L	L	•	_	\Box	\bot	Ţ		Щ	1
Water extraction		+		$\vdash \vdash$		+	\vdash	-	+	+	+			\rightarrow				_		_	+			\dashv	+	+	+	\vdash	\dashv
Water extraction Water supply		1		Н		+	+	-					H	H			_		_	-				\dashv	+	+	+	\vdash	+
Sugar industry		+*				+	+		-+	- -	+-	-	_	-		-	- °	_	+	-	-	-	_	\dashv	+	-	+	\vdash	+

Applications																																		
																														_				
																														2				
					RSγ								50	ŏ	0															·Rai				
					Etanorm SYT / RSY							_ ;	Magnochem 685	Magnochem-Bloc	Etaseco / Etaseco-l				_					z			z			Hya-Rain / Hya-Rain N	0			
					S	Ϋ́	Ţ		U			leπ	eπ	ıeπ	Ë	⋛┃			à	É				Ĭ			š			_	Ĕ			
					Ē	Etabloc SYT	Etaline SYT		MegaCPK		1	Magnochem	Ö.	ò	9	Etaseco RVP			RPH-LF ppuh / ppud	٤ _			В	CINCP / CINCN		в	RWCP / RWCN	~		lain	Hya-Rain Eco			
	ПРК	-	H		ano	aple:	ᆵ		ega	CPKN		agu	agu	agu	ase	ase		Į	RPH-LF	RPH-V	E	CHTR	CHTRa	Š	INVCP	Estigia	Š	WKTR		A-F	ла-Б			
	ä	Ē	Ξ		Ęţ	Ęţ	딻		Š	ð		Ž :	Š	Š	E E	꿃	- 2	A T	2 8	2 2	Ե	Ċ	Ċ	₽	Z	ES	S	≥		Ŧ	Ŧ			
Aquaculture	bs			bs				bs			bs						bs												ns					_
Spray irrigation	E L			sdwnd				sdwnd			E						E												ster					
Mining	Hot water pumps			oil p							Seal-less pumps						Process pumps												y sy					
General irrigation	vate			alc				mic			<u>+</u>						oce												ti				\perp	_
Chemical industry	ot _	\perp	\perp	erm	Ш		_	che			Sea	-		•		◾	占	•										◨	ves		_	_	\perp	_
Dock facilities	Ξ_	_		Hot water / thermal				Standardised chemical				_	4	_	_	_		\perp	_		_	_				_			Rainwater harvesting systems		_	\downarrow	\perp	_
Drainage		\perp	_	ter	Ш	\perp	4	rdis		4	_	\dashv	\dashv	_	\dashv	4	_	\dashv	_	\perp	\perp	_							ater		\dashv	\perp	+	_
Pressure boosting		+	-	Wa			_	nda		_	-	4	4	4	_	_		4		+	+	•			_	4			N.	\Box	\dashv	+	+	_
Sludge thickening		+	-	후 학		\vdash	\dashv	Sta		-	_	\dashv	\dashv	\dashv	\dashv	\dashv	_	\dashv	_	+	+	-			-	\dashv			Rai		\dashv	+	+	_
Disposal	_	+	-	_		\dashv	\dashv		\vdash	4	_	\dashv	-	4	\dashv	\dashv	-	\dashv	_	+	+_	-			_	\rightarrow				\square	\dashv	+	+	_
Dewatering Persoling units		+	+		Н	\dashv	-1		\dashv	-		+	+	+	\dashv	-		+	+	+		-	Н		-	4		\vdash		\dashv	\dashv	+	+	_
Descaling units District heating		+	+		Н	\vdash	\dashv						_		_			+	+	+	+	\vdash	Н		\dashv	\dashv		$\vdash \vdash$		\dashv	\dashv	+	+	_
	•	+	-		Н	\dashv	-			-		-	-	-	-	-	-	+	+	+	+	\vdash	Н	Н	\dashv	\dashv		\vdash		Н	\dashv	+	+	_
Solids transport Fire-fighting systems		+	+		Н	\dashv	-		\dashv	-		+	+	\dashv	+	-		+	+	+	+	\vdash	Н	\dashv	\dashv	\dashv		$\vdash \vdash$		\dashv	\dashv	+	+	_
Geothermal energy		+			\vdash	\dashv	\dashv	ŀ		-1	-		_	\dashv	\dashv	\dashv	-	+	+	+	+	\vdash			\dashv	\dashv		\vdash	ŀ	\dashv	\dashv	+	+	_
Drawdown of groundwater levels	-	+	+		H	\dashv	\dashv		-	-1	-	-	-	\dashv	\dashv	-1	-	+	+	+	+	\vdash	H		-	\dashv		\vdash	-	\dashv	+	+	+	_
Maintenance of groundwater levels		+	+		\vdash	\dashv	\dashv			\dashv	-	+	+	+	\dashv	\dashv	-	\dashv	+	+	+	\vdash					_	\vdash	-	\dashv	+	+	+	_
Domestic water supply		+	+		H		\dashv		\vdash	-	-	+	\dashv	+	\dashv	-		+	+	+	+	\vdash			_	7	_	Н	-			+	+	_
Flood control / coast protection (stormwater)		+	+		Н	\dashv	\dashv		\dashv	\exists	-	\dashv	\dashv	\dashv	\dashv	\exists		+	+	+	+	\vdash	Н	-	\dashv	\dashv		\vdash		\dashv	7	+	+	-
Homogenisation		+	+		Н		\exists				-	\dashv	\dashv	+	\dashv	\dashv		\dashv	\vdash	+	+	\vdash				\dashv		\Box	-	\vdash	\dashv	+	+	-
Industrial recirculation systems							\exists			П											+		H				T	П		\dashv	\dashv	+	+	_
Nuclear power stations			-						\exists	_	-	_	\rightarrow	-	_	-				\rightarrow	+		П		_	7	_	П		\Box	\dashv	\top	+	_
Boiler feed applications			$\overline{}$		П							\top	寸	T	\top			T		Ť	\top					ヿ				T	\exists	\top	\top	-
Boiler recirculation			$\overline{}$			\Box						\dashv	\dashv		\dashv			\dashv		\top	\top					\dashv					\neg	\top	\top	_
Waste water treatment plants												\top	\neg	T				T			\top					\exists					\top		\top	_
Air-conditioning systems																-										\exists		П			\neg	\top		_
Condensate transport																																		_
Cooling circuits	•												•	•																				
Paint shops		┸											4	_		•		_			╙											4	\perp	_
Food and beverage industry		\perp								_	-			_				\perp				-									_	_	\perp	_
Seawater desalination / reverse osmosis		_	_				•				_	-	•	•	_	4		4	_	_	1					4					_	\downarrow	\perp	_
Mixing		\perp	_		Ш	_	_			_	-	\dashv	4	_	_	_		\perp	_	\perp	\perp	_	Ш		_	4					_	\perp	+	_
Offshore platforms		\perp				\perp	_			_	_	\perp	4	_	_	_		_			4	-				\dashv					\dashv	\dashv	\bot	_
Paper and pulp industry	_	+	-			-	4				-	\dashv	4	4	_	_		\dashv	_	+	+	_			•			\square		\dashv	\dashv	+	+	_
Petrochemical industry	_	+	\vdash		Ш	\dashv	4				-				\dashv	-	_	4		4					-	-		\blacksquare		\square	\dashv	\dashv	+	_
Pharmaceutical industry		+	+				-				-	-		\rightarrow	-	-		_		+	+-					ᆜ	_			-	\dashv	+	+	_
Pipelines and tank farms		+	+		\vdash	\dashv	\dashv			•	-	-	_	-	\dashv	-	_	=	_			+=			\rightarrow	\rightarrow				\dashv	\dashv	+	+	_
Refineries Flue are desulphyrication		+	+	-		\dashv	\dashv			-	-	•	-	-	+	-1	-	-	-	•	4		日		-	-				\dashv	\dashv	+	+	-
Flue gas desulphurisation Rainwater harvesting		+	+		\vdash		\dashv		\vdash	-	-	+	+	+	+	-	H	+	+	+	+					_		\vdash			_	+	+	_
Cleaning of stormwater tanks / storage sewers		+	+		\vdash	\dashv	\dashv		\dashv	\dashv	-	+	+	\dashv	\dashv	\dashv	-	+	+	+	+	-	Н		-	-	_	\vdash	ŀ		-	+	+	-
Recirculation		+	+		Н	\dashv	\dashv		\dashv	-	-	+	+	\dashv	\dashv	\dashv		+	+	+		\vdash	Н	-	\dashv	\dashv	_	\vdash	-	\dashv	+	+	+	-
Dredging		+	+		Н	\dashv	\dashv		\dashv	-		+	+	+	\dashv	-		+	+	+	+-	\vdash	Н	\dashv	\dashv	+		\vdash		\dashv	+	+	+	_
Shipbuilding		+	+		Н	\dashv	\dashv		\dashv	-		+	+	\dashv	\dashv			+	+	+	+	\vdash	Н					Н		\dashv	\dashv	+	+	-
Sludge disposal		+	\top		H	\dashv			\dashv	\exists		+	1	\dashv	\dashv	\dashv		+	\dashv	+	+		H	H	_	\rightarrow	ī	\square		Н	+	+	+	-
Sludge processing		+			Н	\Box	\exists		\vdash			\dagger	\dashv	\dashv	\dashv			\dagger	+	\top	\dagger	\vdash	П	=	\dashv	-	Ī	Н		\forall	\dashv	+	+	_
Snow-making systems		\top			П	\dashv			\dashv			\top	\dashv	\dashv	\dashv			\dagger	\top	\top	\top	\vdash	Н	П	\dashv	\dashv		\square		\dashv	\dashv	\top	+	-
Heavy oil and coal upgrading		\top	T		П	\sqcap									\top			-								\dashv				\sqcap	\dashv	\top	\top	-
Swimming pools																					T					\exists		П			\exists	\top	\top	_
Solar thermal energy systems																																		
Fountains																																		
Keeping in suspension																																	\perp	_
Thermal oil circulation		· L					_					•		•	Ţ			•								\Box					\Box		Ţ	_
Draining of pits, shafts, etc.					Ш	•	•							_[Ш								[\Box	\perp	_
Process engineering					Ш		_		•			•	•	•		•		•	- 1			•			•					Ц		\perp		_
Heat recovery systems		1	_		Ш							_	4	4	_			4		\perp			Ш	Щ	_	\perp		Ш		Ц	_	\perp	_	_
Hot-water heating systems		4			Щ	\sqcup	_			•		•		•	-	•		\downarrow	_	\perp	-	_	Щ	Щ	4	4		Ш		Щ	\dashv	\perp	\perp	_
Washing plants		+	-		Щ	\vdash	_		4			_	_	_	4			4	_	+	+		Щ		\rightarrow	\rightarrow	_	\square		Ц	\dashv	+	+	_
Water treatment		+	-		Н	\vdash	4			-					\dashv	4		+	+	+	+	-	Н		\rightarrow	\rightarrow	_	\square		\square	\dashv	+	+	_
Water extraction		+	+		Н	\dashv	-1		\dashv	-		+	+	\dashv	_	_		+	+	+	+	\vdash	Н			\rightarrow	_	\vdash		\dashv	\dashv	+	+	_
Water supply Sugar industry		+	+		Н	\dashv	-						+			-		+	+	+	+	\vdash	Н	H	-	\rightarrow	-	$\vdash \vdash$		\dashv	\dashv	+	+	_
Sugar industry					ш					-		-	-	-1	-	- 1							ш		-							\perp		_

, .pp.,																															
									₹																						
									KSB Delta Solo/Basic Compact MVP																						
									ğ																						
								₹	ᇤ	9 ہے	} <	_											_								
								S	ē	\$ 5	γ ξ	2				ŭ	ゼ					>	S								
								ĕ	Si.	<u>}</u>	> 3	5				ubg	ра				7	?	7								
							1	KSB Delta Macro F/VC/SVP	/Ba	KSB Delta Basic MVP/SVP	KSB Delta Primo F/VC/SVP	≦				Hya-Solo D FL Compact	Hya-Duo D FL Compact			0	Surpresschrom SIC.2	Surpresschrom SIC.2 V	Surpresschrom SIC.2 SVP	щ							
		0	, <u>e</u>					ac.	è	Sic.	Ě	9	>		ی ہ	F	Ë			ы	Ē	Ē	Ĕ	ī.							
		۾ ٻ	÷					Σ	š	ä	2 0	<u> </u>	2	3 2	2 2	۵	D		٩,	5	į	į	Ĕ	Feu							
	141.14	Multi Eco-Pro	Multi Eco-Top		0	_		ett	뜵	# #	10 1	KSB Delta S Hva-Solo D	Hva-Solo DSV	Hva-Solo D FI	Hya-Duo D FL	은	9	Hyamat K	Hyamat V	Hyamat SVP ECO	SSC	SSC	SSC	Surpress Feu SFE							
	3	<u> </u>	₽	z	Ixo-Pro	Filtra N		۵	۵	م م	בֿ בֿ	יַ בֿ	Ÿ	į	į į	Š	ڄَ	Ĕ	Ĕ	Ĕ	pre	pre	pre	pre							
	3	5 5	<u></u>	N ox	ò	₽		S	S	SS	5 5	2 5	\$ \$	2 2	\$ \$	ڄٌ	څ	ş.	۽ ج	\$ ≥	ž	ž	ž	ŭ							
A				_	_			_	_				_	_		_	_				٠,	, 	0 ,	<u> </u>						1	_
Aquaculture	sdund lood		+-	_	\vdash	_	Pressure booster systems	_	_	_	_	_	+	_	+	-	\vdash		_	+-	<u> </u>	_		-	+	_	\vdash	_	+	\vdash	<u> </u>
Spray irrigation	E E					_	ste	-	-		1			4	\perp	_	\sqcup				-			_	4		Ш		\perp	Ш	_
Mining	5				Ш		r S	4	_		4		\perp	\perp			Ш	_							_		Ш			Ш	
General irrigation							ste							<u> </u>																	
Chemical industry	ing						900																								
Dock facilities	E						ē	П	П		Т		Т	Т				П							Т						
Drainage	N N				П		ssn	T	T		Т			Т																	
Pressure boosting	/ 2				П		Pre										П										П			П	
Sludge thickening	Ē							\neg	\neg		\top							\dashv		1											
Disposal	0	\top	†	П	Н	\dashv		\dashv	\dashv	\dashv	+	+	\top	\top	\top	t	\vdash	\top	+	†	t	Н	H	\dashv	\top	\top	Н	\dashv	\top	\forall	$\overline{}$
Dewatering	ntr	+	+	\vdash	H	\dashv		+	\dashv	\dashv	+	+	+	+	+	\vdash	\vdash	+	+	+	\vdash	\vdash	\vdash	+	+	+	\forall	+	+	\forall	
Dewatering Descaling units	8	+	+	\vdash	\vdash	\dashv		+	\dashv	+	+	+	+	+	+		+	+	+	+	\vdash	\vdash	\dashv	+	+	+	\forall	+	+	\forall	
District heating	ati	+	+	\vdash	\vdash	\dashv		+	+	+	+	+	+	+	+	-	+	+	+	+	-	\vdash	\vdash	+	+	+	\vdash	+	+	\vdash	
	uo.	+	+	\vdash	H	-		+	\dashv	+	+	+	+	+	+	\vdash	\vdash	+	+	+	\vdash	\vdash	\vdash	+	+	+	\vdash	+	+	\vdash	_
Solids transport	ant	+	+	\vdash	$\vdash \vdash$	\dashv		+	\dashv	+	+	+	+	+-	. -	-		+	+	+	\vdash	\vdash	\vdash	_	+	+	\vdash	+	+	\vdash	_
Fire-fighting systems	긡	+	+	\vdash	H	\dashv		+	\dashv	+	+	+	+	-				+	+	+	-	$\vdash\vdash$	$\vdash \vdash$	-	+	+	\vdash	+	+	\vdash	_
Geothermal energy	Domestic water supply systems with automatic control unit / swimming	+	+	\vdash	$\vdash \vdash$	4		+	\dashv	\dashv	+	+	+	+	+	-	\vdash	\dashv	+	+	-	\square	\square	\dashv	+	+	\vdash	_	+	$\vdash \vdash$	<u> </u>
Drawdown of groundwater levels	e II	4	\perp	\vdash	Ш	4		\perp	\perp	_	_	\perp	\perp	\perp	\perp	_	\sqcup	\perp	\perp	\perp	_		Щ	_	\perp	\perp	Ш	\perp	_	\sqcup	<u> </u>
Maintenance of groundwater levels	yste				Ш						\perp									\perp											
Domestic water supply	S				Ш									<u> </u>																	
Flood control / coast protection (stormwater)	dd																														
Homogenisation	r Su				П																										
Industrial recirculation systems	ate				П			T	\neg		T			Ť	T		Ħ							\neg			m			Ħ	
Nuclear power stations	3	\top			\Box			\dashv	\dashv		\top	\top	\top	\top	\top		\Box	\dashv	\top	\top				\neg		\top	\Box	\neg	\top	\Box	
Boiler feed applications	stic	+	+		\Box			\dashv	\dashv		+	\top	+	+	\top		\Box	\dashv	\dashv	+				\dashv			\Box	\vdash	+	\Box	
Boiler recirculation	Ĕ	+	+		\vdash			\dashv	\dashv		+	+	+	+	\top			\dashv	+	+				\dashv	+	\neg	\Box	\dashv	+	\vdash	
Waste water treatment plants	ă	+	+		H			+	\dashv	_	+	+	+	+	+		\vdash	\dashv	+	+				\dashv	+	+	\vdash	+	+	\vdash	
Air-conditioning systems		+	+	\vdash	H	\dashv		+	\dashv	+	+	+	+	+	+-		\vdash	+	+	+	\vdash			+	+	-	\vdash	+	+	\vdash	_
Condensate transport		+	+	\vdash	\vdash	-	-	+	\dashv	-	+	+	+	+	+	+		\dashv	+	+	\vdash	Н	-	\dashv	+	-	\vdash		+	\vdash	_
		+	+		\vdash	-	-	+	\dashv	-	+	+	+	+	+	-	\vdash	\dashv	+	+	-			-	+	-	\vdash	_	+	\vdash	<u> </u>
Cooling circuits		+	+		\vdash	\dashv	H	+	\dashv	-	+	+	+	+	+	-	\vdash	+	+	+	-			-	+	+	\vdash	+	+	\vdash	_
Paint shops		+	+	H	Н	4		+	4	-	+	+	+	+	-	-	\vdash	+	+	+	-	_		-	+	_	\vdash	+	+	\vdash	_
Food and beverage industry		_	_		\square	_	_	4	_	\perp	\perp	\perp	\bot	\perp	_	<u> </u>	\sqcup	\dashv	\perp	+	_			\rightarrow	\perp		\sqcup		-	\sqcup	<u> </u>
Seawater desalination / reverse osmosis		_			Ш			4	_		4	\perp	_	\perp	\perp		\sqcup	_	_	_				_			Ш	\perp	\perp	\sqcup	_
Mixing		\perp	\perp		Ш			4	_		\perp	\perp	\perp	\perp	\perp		Ш	_	_	\perp				_	\perp		Ш			Ш	_
Offshore platforms					Ш						\perp	\perp			\perp															Ш	
Paper and pulp industry																															
Petrochemical industry																															
Pharmaceutical industry																															
Pipelines and tank farms		Т			П			T	T		Т		Т	Т							П				Т						
Refineries		\top		П	\Box			\dashv	\dashv	\dashv	\dashv	\top	\top	\top			\sqcap	\dashv	\top	1		П	\Box	\dashv	\top	\neg	П	\neg		\Box	_
Flue gas desulphurisation		\top	\top	П	Н	\dashv		\dashv	\dashv	\top	\top	\top	\top	+	1		\Box	\top	\top	\top				\top	\top		Н	\neg	\top	\forall	$\overline{}$
Rainwater harvesting						\exists					1				\top		\vdash	,						\dashv	+	\top	\Box	\dashv	+	\forall	
Cleaning of stormwater tanks / storage sewers		+-	+-	-	H	\dashv		+	_	-+	+	+	+-	+	+		+	-+'	- -	+-	Ť	-	H	+	+	+	\vdash	+	+	\forall	
Recirculation		+	+	\vdash	\vdash	-		+	\dashv	+	+	+	+	+	+		+	\dashv	+	+	\vdash	\vdash	\dashv	\dashv	+	+	\forall	+	+	\forall	
Dredging		+	+	\vdash	\vdash	\dashv		+	+	+	+	+	+	+	+	-	+	+	+	+	-	\vdash	\vdash	+	+	+	\vdash	+	+	\vdash	_
		+	+	\vdash	\vdash	-		+	\dashv	+	+	+	+	+	+	\vdash	\vdash	+	+	+	\vdash	\vdash	\vdash	+	+	+	\vdash	+	+	\vdash	_
Shipbuilding		+	+	\vdash	$\vdash \vdash$	-		+	\dashv	+	+	+	+	+	+	-	\vdash	+	+	+	\vdash	\vdash	\vdash	+	+	+	\vdash	+	+	\vdash	_
Sludge disposal		+	+	\vdash	$\vdash \vdash$	\dashv		+	4	+	+	+	+	+	+	-	\vdash	\dashv	+	+	-	\vdash	\square	+	+	+	\vdash	+	+	\vdash	<u>—</u>
Sludge processing		+	+		Н	4		\downarrow	_	_	+	\perp	+	+	+	-	\vdash	\perp	\perp	\perp	-		\square	_	\perp	+	\sqcup	\perp	+	\sqcup	<u> </u>
Snow-making systems		\perp	\perp	Ш	Ш	_		\perp	4	_	\perp	\perp	\perp	\perp	_		\sqcup	_	\perp	\perp	_	Ш	Щ	_	\perp	\perp	Ш	_	_	\sqcup	<u> </u>
Heavy oil and coal upgrading		4	1	Ш	Ш			\perp	_	_	_	4	\perp	\perp	_		\sqcup	4	\perp	4	_	Ш	Щ	_	\perp	\perp	Ш	\perp	_	Ш	_
Swimming pools			_		Ш	•		_				\perp	\perp	\perp			Щ		\perp	\perp							Ш			Ш	
Solar thermal energy systems					Ш																						Ш			Ш	
Fountains					\Box																						\Box				
Keeping in suspension			\Box	L^{T}	LΤ			_T	_T		$_{\perp}\Gamma$	╝					LT	_T	$\Box \Gamma$	╧	L^{-}			$_{\perp}$ T	$_{\bot}\Gamma$		LΤ			LΤ	
Thermal oil circulation		T						\top	\neg		T	T	T	Т					T	Т							П		Т		
Draining of pits, shafts, etc.					\Box			\dashv					\top		\top			\neg		\top					\neg		П			\Box	
Process engineering		\top	\top	П	\Box			\top	\dashv	\dashv	\top	\top	\top	\top			\Box	\dashv	\top	\top		П	П	\top	\top	\top	П	\neg	\top	\sqcap	
Heat recovery systems		\top	\top	Н	Н	\dashv		\dashv	\dashv	\dashv	\top	\top	\top	\top			\vdash	\dashv	+	\top		\vdash	\vdash	\dashv	\top	\top	\Box	\dashv		\forall	_
Hot-water heating systems		\top	+	\vdash	\vdash	\dashv		\dashv	\dashv	\dashv	+	+	+	+	\top		\vdash	\dashv	+	+	\vdash	\vdash	\vdash	\dashv	+	+	\forall	+	\top	\forall	
Washing plants						\dashv		-			<u>.</u>				+		\vdash	,						\dashv	+	+	\forall	+	+	\forall	
Water treatment		_		_	-	-		_	-	-1.	+	+-	+=	+	+		+	-+		+=	Ι-	_	-	+	+	+	\vdash	+	+	\forall	
Water creatment Water extraction		+	+	-	Н	\dashv		+	\dashv	+	+	+	+	+	+	+	+	+	+	+	+	\vdash	H	+	+	+	\vdash	+	+	\vdash	_
Water supply		1-				\dashv		•			<u>.</u>	-	1-	+	+	-	\vdash	_		1-	-			+	+	+	\vdash	+	+	\vdash	_
		-	-			-		-	-	-	- '	- -	1	+	+	+	+	- '	- *	- -	1			+	+	+	\vdash	+	+	\vdash	_
Sugar industry																					1						Ш			Ш	

• •																														
															on															
															aţį															
									=					_	Ş															
			8						⋛				n	.0	п															
		.5	=						- × ×	<			aţį	ţ	ጆ															
	z	Ama-Drainer 4 / 5	Ama-Drainer 80, 100	Ama-Porter F / S					Ama-Drainer-Box Mini Ama-Drainer-Box	z	ā		CK 800 Pump Station	CK 1000 Pump Station	Ama-Porter CK Pump Station															
	Ama-Drainer N	ē	ē	Ţ.					ė ė	Evamatic-Box N	mini-Compacta		ď	Ē	ō						=									
	.⊑	글.	굨.	Ţ.		≿ I	2	<u> </u>	무 .달	7	윤	ţ	Ž	2	Ţ.					z	2									
	ے ا	۵	۵	ē	_ ;	MK / MKY	Amaclaan	<u>, a</u>	בו ב	aţi.	ē	Compacta	0	8	Po				Amarex	Amarex N	ž									
	ģ	<u>6</u>	卢	<u>6</u>	Rotex	5	2	<u>8</u>	بة بة 1	<u> </u>	<u>-</u>	Ë	8	9	<u>ڄ</u>	۵.	_ v		٦	ية	5									
	Ā	Αď	Αď	Αď	2	Ž	2	7.	A A	Š	Ē	Ō	X	Š	Αď	SRP E	SRS		Ă.	¥,	=									
A			_	_				1		_	_	_	_	_					_	1	1								$\overline{}$	_
Aquaculture	<u>م</u>	+	\vdash	-	\dashv	_ 8	pump stations	+	_	+-	-	-	-	\vdash	-	-	_	Submersible motor pumps	-	+	_	\vdash	-	-	+	+	-	+	+	_
Spray irrigation	5					_ 3	Ĕ _	1										5											_	
Mining	교					1	21											ā												
General irrigation	ate	Ī		T	T	8	ᆔ	\top							T			5								T			\neg	_
Chemical industry	3		\vdash	\dashv	\dashv			+	\top	+		Н		\vdash	\dashv	\neg	\top	Ĕ			$\overline{}$	\vdash	\neg	\top	+	\dashv	+	+	\dashv	_
	ste	+	\vdash	-	\dashv	- 5	<u></u>	+	-	+-	\vdash	\vdash	-	\vdash	-	-	-	e e	-		-	\vdash	-	-	+	+	+	+	+	—
Dock facilities	×	-	\vdash	-	\dashv		package	+	_	+-		Щ		\vdash	\rightarrow	_	_	rsi	_	+			_	_	+	\rightarrow	+	+	\dashv	
Drainage	S =						a	\perp										l e l												
Pressure boosting	립					-	-											몤												
Sludge thickening	nd					1		Т										S											\Box	_
Disposal	■ ge						5	o la				П							•			\Box	\neg		\top	\dashv	_	1 1	\neg	_
Dewatering	Drainage pumps / waste water pumps	+				- 3	itting units /	_		_		H	Ħ	-	\rightarrow	-			-			\vdash	\dashv	+	+	+	+	+	+	—
	ra			-	-			- '		-						- '			-	-	\rightarrow	\vdash	+	+	+	+	+	+	+	
Descaling units		-	Щ	4	\perp			4		4	-	Щ	Ш	\Box	_	_	+		4	_ L	-	\vdash	\perp	\perp	\perp	_	_	\vdash	\dashv	
District heating		\perp	Ш					\perp			\perp	\square	Ш	Ш					\perp	\perp		Ш			\perp			\sqcup	\perp	
Solids transport			П	T	Т			Т						Π	Т				Т	Т		ΙТ		T						_
Fire-fighting systems			\Box	\dashv	\top			\top		1		П	\Box	\dashv	\dashv	\neg			\dashv	\top				\top	\top	\dashv	\top		\top	_
		+	\dashv	\dashv	+			+	+	+		\vdash	\vdash	\dashv	\dashv	-	+		+	+	+	\vdash	+	+	+	+	+	+	+	—
Geothermal energy		+	\vdash	+	+	_		+	+	+	\vdash	\vdash	\vdash	\vdash	\dashv	+	+		_	+	_	\vdash	+	+	+	+	+	\vdash	+	—
Drawdown of groundwater levels		_	Щ	4	_			4		4	_	\square	Щ	Щ	_				$\overline{}$	• l	\rightarrow	Ш	_		\perp	_	\perp	\sqcup	_	
Maintenance of groundwater levels																														
Domestic water supply								П																						
Flood control / coast protection (stormwater)			\Box	\neg	\neg			\top		1		П		\Box	\neg				\neg			\Box		\top	\top	\neg	\top	\Box	\top	_
		+	\vdash	\dashv	\dashv	-		+	+	+		Н		\vdash	\dashv	\dashv	+		\dashv	+	-	\vdash	\rightarrow	+	+	\dashv	+	+	+	_
Homogenisation		-	\vdash	-	\dashv	-		+	-	+-		Н	-	\vdash	\rightarrow	-	_	-	-	+	_		-	-	+	+	+	+	\dashv	_
Industrial recirculation systems			\Box	_	\perp	_		4		4					_	_			_	\perp			_		\perp	_	_	\perp	\dashv	
Nuclear power stations																														_
Boiler feed applications																														
Boiler recirculation		1		T	\neg			\top		1					T											\neg			\neg	_
Waste water treatment plants		1	H	_	\dashv			•	_	+		Н		\vdash	\dashv	_	_	1 -	-	- 1	-	\vdash	_	_	+	\dashv	_	1	\dashv	_
		+	\vdash	-	\dashv	-	-	•	+	+		\vdash		\vdash	\dashv	-	+	+ +	-		-	\vdash	-	+	+	\dashv	+	+	+	—
Air-conditioning systems		-	\square	4	4	_		\perp		-	-	Щ		\Box	-	-	_		_	_	_	\vdash	_	\perp	+	\dashv	\perp	\vdash	\dashv	
Condensate transport								4																						
Cooling circuits																														
Paint shops																														
Food and beverage industry			\Box	\neg				\top		1		П		\Box	\neg							\Box	\neg	\top	\top	\neg	\top	\Box	\top	_
Seawater desalination / reverse osmosis		+	\vdash	\dashv	-			+	+	+		Н		\vdash	\dashv	\dashv	+		-	_		\vdash	\rightarrow	+	+	\dashv	+	+	+	_
		-	\vdash	\dashv	\dashv	-		+	-	+-	-	\vdash	-	\vdash	\rightarrow	+	_	-	\dashv		•	\vdash	\rightarrow	+	+	+	+	+	\dashv	_
Mixing		_	\sqcup	_	\perp			4		4		Щ			\rightarrow	_			_	_			\rightarrow	\perp	\perp	_	\perp	\perp	_	
Offshore platforms																														
Paper and pulp industry																														
Petrochemical industry			\sqcap	\dashv	\dashv			\uparrow		1	П	\Box	\Box	\sqcap	\neg		\neg		\dashv	\top	\neg	\Box		\neg		\dashv	\neg	\Box	\neg	_
Pharmaceutical industry		+	\dashv	\dashv	+			+	+	+	\vdash	\vdash	\vdash	\dashv	\dashv	+	+		+	+	+	\vdash	\dashv	+	+	+	+	+	+	_
Pipelines and tank farms		+	\vdash	+	+			+	+	+	\vdash	\vdash	\vdash	\vdash	\dashv	+	+		+	+	+	\vdash	+	+	+	+	+	+	+	—
		-	\square	4	\perp			+	_	+		\square	\square	\sqcup	-	-	_		4	+	+	\vdash	_	+	+	_	-	\vdash	\dashv	_
Refineries		_	Ш					1		_		Ш	Ш	Ш						\perp		Ш			\perp			\perp	\perp	
Flue gas desulphurisation		L	Ll	_	_					Ш	L	L		L l	_		Ш		_			L l						┰╵	_	
Rainwater harvesting				\Box	\neg			\top							\Box				\neg	\top	T					\neg			\neg	_
Cleaning of stormwater tanks / storage sewers		\top	\sqcap	\dashv	\top			ı	\top	\top		\sqcap	\sqcap	\dashv	\dashv		\top					\sqcap	\dashv	\top	\top	\dashv	\dashv	+	\top	_
Recirculation			\vdash	\dashv	+			+	+	+	\vdash	\vdash	\vdash	\vdash	\dashv	-	+		+	+	+	\vdash	\dashv	+	+	+	+	+	+	—
		\vdash	\vdash	+	+			+	+	+	\vdash	\vdash	$\vdash\vdash$	\vdash	\dashv	+	+		+	+	+	\vdash	+	+	+	+	+	\vdash	+	—
Dredging		\vdash	Щ	4	\dashv	-[+	-	+	-	\square	Щ	\sqcup	-	_	+		4	+	+	\vdash	_	_	+	4	+	\vdash	\dashv	
Shipbuilding		_	Ш	_	\perp			\perp				Ш	Ш	Ш							\perp	Ш			\perp		\perp	\perp		_
Sludge disposal												[]							_ T	_ [_ T		\perp \top		_
Sludge processing		T	\Box	寸	\dashv			\top	\neg		Т	\Box	П	\sqcap	\dashv	\neg						\Box	\neg			\dashv		\Box	\top	_
Snow-making systems			\vdash	\dashv	+			+	+	+	\vdash	\vdash	\vdash	\dashv	\dashv	\dashv	+		+	_		\vdash	\dashv	+	+	\dashv	+	+	+	_
		+	\vdash	+	+			+	+	+	\vdash	\vdash	\vdash	\vdash	+	+	+		+	+	-	\vdash	+	+	+	+	+	+	+	_
Heavy oil and coal upgrading		+	\sqcup	-	+			+	+	+	\vdash	\square	\square	$\vdash \vdash$	-	-	+		+	+	+	\vdash	+	+	+	+	+	\vdash	\dashv	
Swimming pools		1	Ш	_				\perp		_	\perp	Ш	Щ	Щ	_		\perp		_	_	\perp	Ш			\perp			\sqcup	4	
Solar thermal energy systems		\perp	Ш					\perp		\perp	\perp						\perp		\perp		\perp	Ш				\perp		\perp		
Fountains			П	Т	Т			Т						Π	Т				Т	Т		ΙТ		Т					T	_
Keeping in suspension			\Box	\dashv	\dashv			\top	\neg	1		П	\Box	\Box	\dashv	\neg			\dashv	\top	\top	\Box				\neg	\top		\top	_
Thermal oil circulation		+	\forall	\dashv	+			+	+	+		\vdash	\vdash	\dashv	\dashv	+	+		\dashv	+	+	\vdash	\dashv	+	+	\dashv	+	+	+	_
	_	-		_	_+			+	+	+	\vdash	\vdash	\vdash	\dashv	\dashv	+	+		_	_	-	\vdash	+	+	+	+	+	\vdash	+	—
Draining of pits, shafts, etc.		-			-	_		+	+	+	\vdash	\sqcup	\square	$\vdash \vdash$	-	+	+		•	<u>- '</u>	-	\vdash	+	+	+	+	+	\vdash	\dashv	_
Process engineering		_	Ш	\perp				\perp		4		Ш	Ш	\square					\perp	\perp		\sqcup			\perp			\sqcup	\perp	
Heat recovery systems												L 1	LI		[[1			LI		
Hot-water heating systems			П	T	T			T				П			T				T	T		\Box	T	T		T			T	_
Washing plants		\top	\sqcap	\dashv	\top			\top	\top	1	\vdash	\Box	\Box	\sqcap	\dashv	\neg	\top					\Box	\neg	\neg	\top	\dashv	\top	\Box	\top	_
Water treatment				\dashv				+	+	+	\vdash	\vdash	\vdash	\dashv	\dashv	\dashv	+	-	_			\vdash	+	+	+	+	+	+	+	_
		+		_	- '			+	+	+	-	$\vdash\vdash$	\vdash	\vdash	\dashv	-	-	-	_	_	_	\vdash	+	+	++	+	+	+	+	_
Water extraction				-	_	_[]		\perp	\perp	+	\vdash	Щ	Щ	\sqcup	_	\perp	\perp	- I-	-		_	\sqcup	_	_	+	_	\perp	\vdash	\dashv	
Water supply		\perp	Ш					\perp			\perp	\square	Ш	\square						<u> </u>	•	Ш		\perp				$oxed{oxed}$		
Sugar industry			П	Т	Т			Т	T					Т	T				Т	Т		ΙТ	T	Т		T			T	_
																														_

		Amacan K	Amacan P	Amacan S		Amamix	Amaprop	Amaline		Sewatec	Sewatec SPN	Sewabloc	/P	KWP-Bloc	2	، ر	LSA-S	CC-IVI	<u> </u>		. 0	<u>Q</u>	٥	×		L	Etanrimo I	Etaprime L Etaprime B	Etaprime b F7 B/I	D/L	AU Monobloc	
				Αď		Αď	Α̈́	Αď		Se	Sev	Şe	ΚW	₹	9	\$ 3	בֿן בֿ	ַ נַ	ברל ה	2	G.	MHD	물	MDX	Σ	₹		- r	7 5	A E	: P	
Aquaculture Spray irrigation		-		\dashv	units	\dashv		-	Pumps for solids-laden fluids	L		Н	\dashv	\dashv	Slurry pumps	+	+	+	+	+	+	+	\vdash	H	\vdash		Self-priming pumps	+	+	+	+	+
Mining	ge tr	Н	Н	\dashv	ng L	\dashv		\dashv	an fl	H		Н		┰	nd /												nd (Η	+	+	+	+
General irrigation	n o				cleaning				lade	Г		П			ling.	\top			\dagger	\top		1	T	П	П		nin Di —	\top	\top	1	ı	T
Chemical industr	y Sign				S C C				-spi						S												pri					
Dock facilitie		L			tank				r so			Ш				4	\perp	1	_	\perp				L.	Ш	_ 3	<u></u>	4	\perp	\perp	\bot	_
Drainage	_	L	Ш	_	rs/	_		\Box	s fo	L		Ш	_	4	-	4	_	\perp	+	\perp	+	+	\vdash	l-	\square		•		_			\perp
Pressure boosting Sludge thickening		L	\vdash	\dashv	agitators			-	dur	H		Н	\dashv	\dashv	-	+	+	+	+	+	+	+	⊬	H	\vdash		-	+		4	+	┾
Disposa	a sible	H	\vdash	\dashv	agi	-		-	P	-		Н				+	+	+	+	+	+	+	\vdash	Н	\vdash	\dashv		+	+	+	+	+
Dewatering	mer	П			ers /	\dashv		\dashv		H		Н		i		\dagger	+	+	\dagger	+	+	+	\vdash	H	Н				-	+		+
Descaling unit		Ē	H	┪	Mixers	\dashv		\dashv				Н		ī										Н				+	+	+	+	\dagger
District heating																╧		İ	İ	İ		İ	Γ	Г				丁	丁	İ	I	I
Solids transpor													•	∎	I	•						•						I	I	I	I	I
Geothermal energy	_	L	Ш	_]		[Щ			L		Ц	[_		1	1	1	1	1	1	L	\perp	\bigsqcup^{1}	Ш			1	\perp	\perp	\perp	_
Fire-fighting system		L	Н		-	4		\dashv		<u> </u>		Н	\dashv	-	_	+	+	+	+	+	+	\vdash	\vdash	H	\vdash				-	_		_
Drawdown of groundwater level Maintenance of groundwater level		H	\vdash	\dashv	-	-		-		H		Н	\dashv	-	-	+	-	+	+	+		+	\vdash	H	\vdash		-		4			\vdash
Domestic water supply		\vdash	\Box	\dashv	-	\dashv		\dashv		H		Н	\dashv	-		+	+	+	+	+	+	+	\vdash	Н	\vdash		١.		_	+		+
Flood control / coast protection (stormwater		Н	\vdash	\dashv				\dashv		H		Н		\dashv		$^{+}$	+	+	+	+	+	+	\vdash	Н	\vdash		ŀ	+	+	╅	+=	+
Homogenisation		Г	П	\neg						Г		П				\top			\dagger	\top		1	T	П	П			\top	\top	\top	\top	\top
Industrial recirculation system	ıs																											I	\perp			
Nuclear power station			Ш							L							\perp	\perp		\perp			L	L	Ш			4	\perp	\perp	1	\perp
Boiler feed application		L	Ш		-	4				<u> </u>		Ш			_	4	\perp	\perp	+	+	\perp	\perp	<u> </u>	<u> </u>	\sqcup			\perp		_	\perp	-
Boiler recirculation		Ŀ	Н	\dashv	-	_		=		Ŀ	_	Н		_	-	+	+	+	+	+	+	+	\vdash	H	\vdash		-	+	-	_	+	+
Waste water treatment plant Air-conditioning system		ŀ		\dashv	-	-		-		-	-			-1	-	+	+	+	+	+	+	+	\vdash	\vdash	\vdash				\rightarrow	╀		+
Condensate transpor		H	\vdash	\dashv	-	\dashv		\dashv		┢		H	\dashv	\dashv		+	+	+	+	+	+	+	\vdash	Н	\vdash		-	+	+	+	+	+
Cooling circuit		Г		\exists						H		Н				†	\top	†	†	+	†	\top	\vdash	Н	П					•	+	\top
Paint shop)S																											工			I	
Food and beverage industr	_		Ш									Ш											L		П							L
Seawater desalination / reverse osmosi	_	L			-	_				L		Ш				4	\perp	\perp	+	\perp	\perp	-	_	<u> </u>	\sqcup			\perp	\perp	\perp	\perp	\perp
Mixing	_	H	Н	\dashv	-			-		_		Н	\dashv	-	-	+	+	+	+	+	+	\vdash	\vdash	H	\vdash			+	+	+	+	+
Offshore platform Paper and pulp industry		H	\vdash	-	-					_		Н			\vdash	+	+	+	+	+	+	+	⊬	H	\vdash		H	+	+	+	+	+
Petrochemical industry	_		\vdash	\dashv	-	-		-				Н	-	-1		+	+	+	+	+	+	+	\vdash	Н	\vdash		-	+	+	+	+	+
Pharmaceutical industry	_	Н	\Box	\exists	-	\dashv		\neg				Н	\dashv	\dashv		+	+	+	+	+	+		\vdash	Н	\Box			1	+	+	+	+
Pipelines and tank farm	-	Г	П	\neg						Г		П				\top			\dagger	\top		1	T	П	П			\top	\top	\top	\top	\top
Refinerie																												I	I	I		
Flue gas desulphurisation			Ц			I				Ĺ		Ц				Ţ		Ţ	\Box	1	•		L	\Box	Ш			Ţ	\perp	\perp	\perp	L
Rainwater harvesting	_	_		_		_	Щ	Ц		_	_	Ц	_	_		4	\perp	\perp	+	+	+	1	\vdash	\bigsqcup	\sqcup			4	\downarrow	\perp	\perp	\perp
Cleaning of stormwater tanks / storage sewer Recirculation		\vdash	Н	-		-	\vdash	Ļ		_	_	Н	\dashv	-		+	+	+	+	+	+	+	\vdash	\vdash	\vdash			+	+	+	+	+
Recirculation Dredging		\vdash	\vdash	\dashv		-				\vdash		Н	\dashv	-					1	+	+	-		\vdash	\vdash			+	+	+	+	+
Shipbuilding		Н	H	\dashv		\dashv	\dashv	\dashv			\vdash	H	\dashv	-	<u> </u>	+	+	+	+	+	+	+	-	Н	H			+	+			+
Sludge disposa		Г	П	\neg		7		\neg		┏					ı	•								Н				\dagger	十	+	+	T
Sludge processing	g									•					ı	•							-	Г				J	I	\perp	İ	I
Snow-making system			П					◨									I	\Box		\perp					П			Ţ	\perp	I	\perp	
Heavy oil and coal upgrading		L	Ц			4	Щ	Ц		L	_	Ц		_		4	\perp	\perp	+	1	1	1	\vdash		Ш			4	\downarrow	\downarrow	4	\perp
Swimming pool		\vdash	Н	\dashv		_	\Box	\dashv		_		Н	_	-		+	+	+	+	+	+	\vdash	\vdash	\vdash	\vdash		1	1	4	┦		+
Solar thermal energy system Fountain		\vdash	Н	-		-	\vdash	\dashv		\vdash		Н	-	-		+	+	+	+	+	+	+	\vdash	\vdash	\vdash			+	+	+	+	+
Keeping in suspension			Н	\dashv		\dashv		\dashv		_		Н	\dashv	-		+	+	+	+	+	+	+	+	Н	\vdash			+	+	+	+	+
Thermal oil circulation		Г	Н	\dashv		\dashv	_	\dashv				H	\dashv			+	$^{+}$	†	\dagger	†	T	†	\vdash	Н	\sqcap			+	+	+	\dagger	T
Draining of pits, shafts, etc		Г	П	\neg				\exists				П	\dashv			\dagger	\top	\top	\dagger	\top	T	T	\Box	П	\sqcap			\dagger	\dagger	\top	\dagger	\top
Process engineering	g																												I			
Heat recovery system			П									Ц				I	\perp	\perp		\Box			L	\Box	П			\perp	\perp	\perp	\perp	
Hot-water heating system		L	Ш	_		_	Щ	Ц		_	_	Ц		_		4	\perp	\downarrow	+	+	+	-	\vdash	\bigsqcup	Ш			4	\downarrow	\perp	4	4
Washing plant		L		ᆜ		_	\Box	-		_	_	Н		_		+	+	+	+	+	+	\vdash	\vdash	\vdash	\vdash			+	-	_	+	+
Water treatmen	(C											ıl												1						_	4	\perp
Water extraction	2					- 1		- 1										- 1					\Box		\Box				- 1	1 -		

	UPAchrom 100 CC	UPAchrom 100 CN	UPA 150 C	UPA 200, 200B, 250C	UPA 300, 350	UPA 400-850	UPA D	8 Primo		Comeo	Movitec H(S)I	Movitec	Movitec VCI	Multitec	Omega	RDLO	RDLP	Vitachrom	Vitacast / Vitacast Bloc	Vitaprime	Vitastage	Vitalobe		CHTA / CHTC / CHTD	HGB / HGC / HGD	HGI	HGM	LUV / LUVA	WKTB	
Aquaculture	sdu							sdu	sdu					200	3			<u>0</u>	\perp				spu	\Box	\Box	\perp	\perp	I		\perp
Spray irrigation Mining	Submersible borehole pumps		-	-	-	H	름	Vertical turbine pumps	High-pressure pumps		•	-	_	Avially colit number		\vdash		nen –	+	\vdash		Н	islands	+	\dashv	+	+	+	\vdash	\dashv
General irrigation	alor =		+=	+	H	H		bine	n e e				-	<u>:</u>			<u> </u>		+	+		Н	nal	+	+	+	+	+	\vdash	\vdash
Chemical industry	oreh	Ι-	Ι-	-	-		-	튑	ress		-	-	_	_			- :						conventional	+	+	+	+	+	\vdash	
Dock facilities	e bc	†	\vdash	\vdash	H	Н		<u>a</u>	■ d-d		\dashv		Τ.	- iv	<u> </u>		- 5	3	+-	一	_	H	nve	\top	\top	\top	\top	+	Н	\vdash
Drainage	lqis	T				П		erti	H.		\neg		\top			П	2					П		\top	\top	\top	\top	\top	П	
Pressure boosting	■ mer							>									-						station							
Sludge thickening	Sub																7	a												
Disposal		\perp	_						_	Ш		_	_	4		Ш		ם ש				Ш	power	\dashv	\dashv	\dashv	\perp	\perp	Ш	\perp
Dewatering		\perp	_	_		Ш			4	Ш	_	_	\perp	4	Ŀ		_ {	<u> </u>	\perp			Ш	g	\dashv	\dashv	\dashv	\perp	\perp	Ш	\vdash
Descaling units		+	\vdash	-	_	Ш				$\vdash \vdash$	_	4	+		-				+	-		Ш	Pumps for	-	-	\dashv	+	+	\vdash	\dashv
District heating		+	\vdash	\vdash	H	\vdash	\vdash			\vdash	\dashv	\dashv	4	-	H		- 3	ž –	+	-	_	Н	mp	+	\dashv	+	+	+	\vdash	\dashv
Solids transport		+	\vdash	-	-	\vdash				$\vdash \vdash$	_		+.	-			- 4	1000	+	\vdash	_	\vdash	Pu	+	\dashv	+	+	+	\vdash	\dashv
Fire-fighting systems Geothermal energy		-	+		-	Н	-	-	-	\vdash	-	-	-				- 4	<u> </u>	+	\vdash	_	\dashv		+	+	+	+	+	\vdash	\dashv
Drawdown of groundwater levels										H	\dashv	-	+	-		Н	- 5	5 -	+	-		Н	-	+	+	+	+	+	\vdash	\vdash
Maintenance of groundwater levels		╁		+			Ħ		_	H	\dashv	\dashv	\dashv	\exists		\vdash	- 2	cd	+			Н		+	+	+	+	+	\vdash	\vdash
Domestic water supply										П	\neg		\dashv			\Box	2					П		\dashv	\dashv	\top	\top	+	П	
Flood control / coast protection (stormwater)																П	. 2							\top	\top	\top			П	
Homogenisation		T			İ					П		T	T			П	.5	2	T					\top	\neg	\top	Ť	\top	П	
Industrial recirculation systems																	Í													
Nuclear power stations																							-	_				1		
Boiler feed applications		\perp	_	\perp						Ш		•	-			Ш		L				Ш			┛			\rightarrow		\dashv
Boiler recirculation		\vdash	\vdash	╄	_	Ш	_	_	_	$\vdash \vdash$	-	\dashv	<u> </u>	-	_	Н	_	_	+	-		Ш		\dashv	\dashv	+	+	-	Н	\dashv
Waste water treatment plants		+	\vdash	-		\square				H	_	_	_		-	H		-	+	-		Н	-	+	\dashv	+	+	+	\vdash	\vdash
Air-conditioning systems Condensate transport		+	+	\vdash		\vdash	-				-	•	_	-			-	-	+	-		Н	-		_			+	Н	\vdash
Cooling circuits		+	+	\vdash		H	_		+				_			\rightarrow	-	-	+	\vdash		Н		-	-		+	+		\vdash
Paint shops		+		\vdash		\vdash				H	\rightarrow	\rightarrow		-	-	\vdash			+			\vdash		+	+	+	+	+	\vdash	\vdash
Food and beverage industry		\top		+		H				Н			_			H								\top	\forall	\top	+	+	\Box	\Box
Seawater desalination / reverse osmosis		\top								П	_		T	-								П		\top	\top	\top	\top	\top	П	\sqcap
Mixing		İ								П						П								寸		\top	T			
Offshore platforms																														
Paper and pulp industry		╙								Ш			_			Ш		L				Ш		4	_	\perp	\perp	\perp	Ш	$\perp \perp$
Petrochemical industry		\perp	_	┡	_	Ш	_			Ш	_	_		-	Ŀ			L	_	_		Ш		\dashv	\dashv	\dashv	\perp	\perp	Ш	\perp
Pharmaceutical industry		\vdash	-	-						Ш	\dashv	_	\dashv	4		Н					•		-	\dashv	\dashv	\perp	+	+		\dashv
Pipelines and tank farms		+	-	-	-	H		_	-	Н	\dashv	_	+	-	-	Н	-	\vdash	+	-		Н	-	+	\dashv	+	+	+	\vdash	\vdash
Refineries Flue gas desulphurisation		+	+	\vdash	┢	\vdash	_		-	Н	\dashv	\dashv	+	-	-	Н	-	\vdash	+	+		Н	-	+	\dashv	+	+	+	\vdash	\vdash
Rainwater harvesting		+	\vdash			\vdash				\vdash	\dashv		\dashv	-		Н		-	+			Н	-	+	+	+	+	+	\vdash	\vdash
Cleaning of stormwater tanks / storage sewers		+	\vdash	\vdash		H	Н			H	\dashv	\dashv	\dashv			H			+			H		+	+	+	+	+	\vdash	\vdash
Recirculation		†	\top	\vdash		Н				П	\dashv	\dashv	\top			H			\top			П		\dashv	\top	\top	\top	+	\Box	\vdash
Dredging		†										\neg	\neg			П								\top	\top	\top	\top	\top		
Shipbuilding																														
Sludge disposal						Ш				Ш	_[\Box				Ш			_			Ш		\perp	\perp	\perp	\perp	\perp	Ш	\perp
Sludge processing		1		_	_	Ш	Щ			Ш	\dashv	4	_			Ш			\perp			Ш		4	4	\dashv	\perp	4	Ш	\perp
Snow-making systems		-	_	-	•					Н	_	_	_ !	-		\sqcup	_[]		+		_	Ш		\dashv	•	4'	-	+	\sqcup	\vdash
Heavy oil and coal upgrading		+	\vdash	-	_	Н				$\vdash \vdash$	\dashv	\dashv	+	-		\vdash	_	-	+	-	_	Н		+	\dashv	+	+	+	\vdash	\dashv
Swimming pools Solar thermal energy systems		+	+	\vdash	┢	\vdash	_		-	Н	\dashv	\dashv	+	-	_	Н	-	\vdash	+	-		Н	-	+	\dashv	+	+		\vdash	\vdash
Fountains		-				\vdash				\vdash	\dashv		\dashv	-		Н	-	-	+			Н	-	+	+	+	+	╀	\vdash	\vdash
Keeping in suspension		╫	Ι-	Ι-	_	H	Н			H	\dashv	\dashv	\dashv			\Box			+			H		+	+	+	+	+	\vdash	\vdash
		\dagger	\vdash		\vdash	\forall				П	\dashv	\dashv	\top			H			\dagger			П		+	+	+	+	+	\Box	\dashv
Thermal oil circulation		İ	İ	Ι	Γ											П								\top					П	
																			I											
Thermal oil circulation		-		1 -	1	ΙĨ				Ш			-			Ш						Ш			\perp	\perp	\perp	\perp	Ш	\perp
Thermal oil circulation Draining of pits, shafts, etc. Process engineering Heat recovery systems				-	-	\vdash													1	1										. 1
Thermal oil circulation Draining of pits, shafts, etc. Process engineering Heat recovery systems Hot-water heating systems										H	_	_	\rightarrow		-	\vdash	-		+	-		Щ		\perp	\dashv	+	+	+	\vdash	<u>'</u>
Thermal oil circulation Draining of pits, shafts, etc. Process engineering Heat recovery systems Hot-water heating systems Washing plants		-	_		_		_		_			_							-		_			\downarrow	\downarrow	\downarrow	+	+		#
Thermal oil circulation Draining of pits, shafts, etc. Process engineering Heat recovery systems Hot-water heating systems Washing plants Water treatment		-	+					- -		•	_	-	- I		Ŀ	_		•			•			+	 	+	+	+		
Thermal oil circulation Draining of pits, shafts, etc. Process engineering Heat recovery systems Hot-water heating systems Washing plants			•	•	=						•	_	■ I				- -	•			•		-	+	 	+		+		

Overview of Applications

	Z / PNZ																									PumpDrive 2/PumpDrive 2 Eco	,			
	SEZ / SEZT / PHZ / PNZ	SNW / PNW	Beveron	SPY	RER	RSR	RUV	PSR	RHD	RHM	RVM	RHR	RVR	RVT		RPH-RO	HGM-RO		RC / RCV		EDS	DU / EU	KSB SuPremF	KSB UMA-S		PumpDrive 2/P	PumpDrive R		PumpMeter	KSB Guard
Aquaculture	ds			2	2										sis			Sd		ns			es		N.	2		Sis		
Spray irrigation	islands		4	and a support of the		\perp		_	_	\perp		Ш		_	by reverse osmosis			displacement pumps		Fire-fighting systems			Drives		·	=	•	diagnosis		
Mining		Ш	_	t	<u></u>			_	_	\perp	_			_	e 0			_t	_	g sy		_		•	ا ا	5	\perp	dia		
General irrigation	tion		-					_	_	+	-	Ш	\vdash	\dashv	vers			= e me	Ŀ	hti	_	_		_	ן ממט		_	and		-
Chemical industry Dock facilities	nven		•			\vdash	H	\dashv	+	+	+	Н	\dashv	\dashv	y re	\dashv	+	olace	-	-fig	\dashv	\dashv	•	+	<u>ا م</u>	=	-	Monitoring and	-	
Drainage	00	_	=	- 0				\dashv	+	+	+		\vdash	\dashv	n b	\vdash		dist	┢	Fire		\dashv		+	ri-			tori		
Pressure boosting	tion	1	7					\dashv	\top	\top		П	\Box	\exists	atic	\Box		tive				\exists		_			_	lon		
Sludge thickening	sta	П	\top	ب ا		\top		\dashv	\top	\top		П			alin			Positive							1		\rightarrow	2		
Disposal	power station conventional	Ш		Dumne for											de:												_			
Dewatering	<u>8</u>				1			_		4					for				_		_	_	•	-						
Descaling units	Pumps for	+	+				$\vdash \vdash$	\dashv	-	+	\vdash	Н	\sqcup	\dashv	Pumps for desalination	\sqcup	_		_		-	\dashv		-	-	H	_			
District heating Solids transport	dmi	H	+			+	Н	\dashv	+	+	+	Н	Н	\dashv	Pu	Н	+		\vdash		\dashv	\dashv	•	+		-		-		
Fire-fighting systems	- P	++	+			+	Н	+	-	+	+	Н	Н	\dashv		Н	+		-			╣		╁		H	+		-	
Geothermal energy		\forall	+				H	\dashv	+	+	+	Н	\dashv	\dashv		\dashv						-1		+-			+			
Drawdown of groundwater levels								\neg				П													ī					
Maintenance of groundwater levels																														
Domestic water supply		Ш	4			\perp		_	_	\perp		Ш		_									1	\rightarrow	Ц		_			
Flood control / coast protection (stormwater)			-		_			_	_	-									_		_	_	1	-						\vdash
Homogenisation		+	\dashv	-	_	\vdash		\dashv	+	+	+	Н	\dashv	\dashv		\vdash	_	-	-		\dashv	\dashv		-	-			-	_	
Industrial recirculation systems Nuclear power stations				-										Н		\vdash	+	-	\vdash		\dashv	\dashv	•	+	+	ŀ	-			
Boiler feed applications	- I	1	_	-	F	Ι-	-	_		+	Η-		-	-1		\vdash			H			\dashv		+	+		+			-
Boiler recirculation		\Box	\top					\neg				П	\Box	\exists		\Box			Г			\exists		T			\top			
Waste water treatment plants																														
Air-conditioning systems			4		_		Ш	_	4	4	_	Ш							_		_	_	1	-			_			
Condensate transport	-	\square	_		_	\vdash		_	_	+	-	Ш	\Box	\dashv			_		_		_	_		-			_	-	_	
Cooling circuits Paint shops		\vdash		•	-			\dashv	+	+	+		\dashv	\dashv		\dashv	-	-	H		\dashv	\dashv		-	-	H	_	-		
Food and beverage industry		\vdash	\dashv			\vdash		\dashv	+	+		Н	\dashv	\dashv		\dashv		-	H		\exists	\dashv		_		H			-	
Seawater desalination / reverse osmosis						\vdash		\dashv		\top		П	\dashv	\dashv					H						_		+-			
Mixing																														
Offshore platforms		Ш	4			Ш			_													_		╀		L	\perp			•
Paper and pulp industry		\sqcup	\perp	4	_			_	_	+	-		\perp	_		\perp		4	L		_	4	•	4			-			•
Petrochemical industry			•	-	_	\vdash	\vdash	\dashv	+	+	+	Н	\dashv	\dashv		\dashv	+	-	-		-	\dashv	H	+	-			-	_	
Pharmaceutical industry Pipelines and tank farms		+	+	-	\vdash			\dashv	-	+	+		\vdash	-			-				-	\dashv	ŀ	+	+	-	-	-		
Refineries		\Box	\dashv					\dashv	\dashv	+				\exists		\neg			F		\exists	\dashv		$^{+}$	1		+			
Flue gas desulphurisation		\Box	T				П	\neg			T	П																		•
Rainwater harvesting																														•
Cleaning of stormwater tanks / storage sewers		Ш	4			\perp	Ш	_	_	\perp	_	Ш		_			_		_		_	_	1	_			\rightarrow	-1 1		\perp
Recirculation	-	\vdash	+			\vdash	Н	\dashv	-	+	\vdash	Н	\dashv	\dashv		\dashv	+		-		-	\dashv	•	+	-	-	-	-		
Dredging Shipbuilding		\vdash	+			\vdash	$\vdash \vdash$	\dashv	+	+	+	Н	\dashv	\dashv		\dashv	-				\dashv	\dashv		+		H	+		\dashv	
Sludge disposal		+	+			+	H	\dashv		+	+	Н	\dashv	\dashv		\dashv	+		Ē		\exists	\dashv		+			+			
Sludge processing		$\dagger \dagger$	+				H	\dashv	\top	\dagger		П	\forall	\exists		\forall	\top					\exists		†			\top			-
Snow-making systems																							•		ı					
Heavy oil and coal upgrading		Ш	\perp					_		\perp		Ш		_								_		╀			\perp			•
Swimming pools			4	_	_	\perp		_	_	_		Ш	\Box	_		\Box			L		_	4	•	4						┸
Solar thermal energy systems Fountains		\vdash	+	-	_	\vdash		-	_	+	+		\dashv	-		\dashv			•		_	-	-	+		H	+	-	•	-
Keeping in suspension	-	+	+	-	-	\vdash	H	\dashv	+	+	+	Н	\dashv	\dashv		\dashv		-	H		\dashv	\dashv			4				-	-
Thermal oil circulation			\dashv			\vdash		\dashv				Н		\dashv								\neg		\rightarrow	1	H	\rightarrow			
Draining of pits, shafts, etc.		\Box						\neg		\top														_	1		_	-		•
Process engineering		Ш																						\rightarrow		Ŀ				
Heat recovery systems		\Box	_				Ц	_[1	<u> </u>	Ш	Ц	Ц		Ц			L		_]	Ц	•	_		•	\rightarrow			
Hot-water heating systems		\vdash	+			\vdash	$\vdash \vdash$	\dashv	_	+	\vdash	Н	\sqcup	\dashv		\sqcup	_		<u> </u>		4	\dashv		_	-	H	_		-	
Washing plants Water treatment		++	+			+	Н	\dashv	-	+	\vdash	Н	\dashv	\dashv		Н	+		\vdash		-	\dashv		_			_	-	=	
Water treatment Water extraction				-			H	\dashv	+	+	+	Н	\dashv	\dashv		\dashv	+				\dashv	\dashv		_		H	-		H	
Water supply			_			\Box	H	\dashv	+	\dagger	$^{+}$	Н	\forall	\dashv		\forall	+				\exists	\dashv		_		E	\rightarrow		i	
Sugar industry										İ														_			$\overline{}$			
											•			_																

Drive, variable speed system and monitoring

KSB SuPremE

Number of pumps U [V]

PumpDrive / PumpDrive R only

≤ 1 Description

Power supply via IEC-compatible sensorless magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4 / IE5 (super/ultra premium efficiency) to IEC TS 60034-30-2:2016 for operation on a KSB PumpDrive 2, PumpDrive 2 Eco or PumpDrive R variable speed system. Suitable for connection to three-phase 380 - 480 V power supply (via PumpDrive). The motor mounting points comply with EN 50347 specifications to ensure compatibility with standardised IEC frame motor applications and full interchangeability with IE2 or IE3 standardised asynchronous motors. Envelope dimensions lie within the limits for IE2 / IE3 motors as recommended in DIN V 42673 (07-2011). The motor is controlled without rotor position sensors. The efficiency of the motor also exceeds 95 percent of nominal efficiency when the motor runs at 25 percent of its nominal power on a quadratic torque-speed curve. The motor is magnetless which means that socalled rare earths are not used in production. Drive production is thus sustainable and environmentally friendly.

For use with dry-installed variable speed pumps which can be driven by standardised foot-mounted and/or flange-mounted motors.

http://shop.ksb.com/catalog/k0/en/product/ES000866

KSB UMA-S

Number of pumps U [V]

Other mains voltages on request

Permanent-magnet submersible synchronous motor, for operation on a KSB PumpDrive R variable speed system. NEMA connections and identical outside diameters ensure full interchangeability with comparable 6-inch or 8-inch asynchronous motors. The motor is controlled without rotor position sensors. The motor efficiency is 5 - 12 % above that of asynchronous motors. Given the design and functionality the use of permanent magnets is essential.

Exclusively for submersible borehole pumps in the range of 4 to 150 kW.

http://shop.ksb.com/catalog/k0/en/product/ES000003

PumpDrive 2 / PumpDrive 2 Eco

Number of pumps P [kW] U [V] Frequency inverter

≤6 Description 3~380 - 480

1 per motor

55 Modular self-cooling frequency inverter that enables continuously variable speed control of asynchronous and synchronous reluctance motors by means of analog standard signals, a field bus or the control panel. As PumpDrive is self-cooling, it can be mounted on a motor, on the wall or in a control cabinet. Up to six pumps can be controlled without needing an additional controller.

Applications

Air-conditioning systems, heat generation, heat distribution, water supply systems, water extraction, water treatment, water distribution, water transport, refrigeration, cooling distribution, heat generation, heat distribution, fluid transport, cooling lubricant distribution, industrial water supply, tank drainage, waste water transport

http://shop.ksb.com/catalog/k0/en/product/ES000911

PumpDrive R

Number of pumps P [kW] U [V] Frequency inverter

1 per motor

55 Frequency inverter for wall mounting or cabinet mounting. For variable speed 3~380 - 480 control or other control functions of asynchronous motors, synchronous reluctance motors like KSB SuPremE or permanent magnet synchronous motors. PumpDrive R extends the power range of KSB PumpDrive up to a rated power of 110 kW as standard or up to 1.4 MW (on request).

Air-conditioning systems, heat generation, heat distribution, water supply systems, water extraction, water treatment, water distribution, water transport, refrigeration, cooling distribution, heat generation, heat distribution, fluid transport, cooling lubricant distribution, industrial water supply, tank drainage, waste water transport

29 Automation

PumpMeter

Number of pumps U [V DC]

≤ 1 Description

24 Device for monitoring the operation of one pump. It is an intelligent pressure transmitter for pumps, with on-site display of measured values and operating data. It records the load profile of the pump in order to indicate any potential for optimising energy efficiency and availability. The device comprises two pressure sensors and a display unit. PumpMeter is supplied completely assembled and parameterised for the pump it is used with. It is ready for operation as soon as the M12 plug connector is plugged in.

Applications

Air-conditioning systems, cooling circuits, cooling lubricant distribution, heating systems, water treatment plants, water supply systems, water distribution systems, water transport systems, water extraction systems

http://shop.ksb.com/catalog/k0/en/product/ES000807

KSB Guard

≤ 20 (per gateway) Description Number of pumps U [V AC] 110 - 240 (gateway) 2 x 1,5 (sensor) U [V DC]

System for monitoring the condition of pumps: Sensors on the pump record vibration and temperature data, which is processed in the KSB Cloud. Information on the pump's condition can then be accessed using the KSB Guard app or through the web portal. Easy to retrofit on pumps during operation.

Applications

For monitoring dry-installed pumps, optimising maintenance and improving system availability

Drinking water circulators, fixed speed

Calio-Therm S NC/NCV

Q [m³/h]H [m] p [bar] T [°C]

Data for 50 Hz operation

Also available for 60 Hz

≤ 10 \geq +5 - \leq +60

1/2 - 3/4 Description

≤ 0,7 Maintenance-free high-efficiency glandless drinking water circulator pump, ≤ 1 screw-ended, electric motor with multiple fixed speed levels, for use in drinking water supply systems.

Applications

Drinking water circulation systems

http://shop.ksb.com/catalog/k0/en/product/ES000918

Calio-Therm NC

Q [m³/h]H [m] p [bar] T [°C] n [rpm]

≤ 10 \geq +2 - \leq +65 Data for 50 Hz operation

3/4 - 1 Description

≤ 9 Maintenance-free fixed speed glandless drinking water circulator pump, screw-ended, electric motor with multiple fixed speed levels, for use in drinking water supply systems and hot water supply systems.

Applications

Drinking water supply systems, hot water supply systems and similar systems in industry and building services (e.g. cooling water recirculation)

http://shop.ksb.com/catalog/k0/en/product/ES000928

Drinking water circulators, variable speed

Calio-Therm S

Q [m³/h]H [m] p [bar] T [°C] n [rpm]

≤ 10 ≥ +2 - ≤ +65 ≤ 3000

Data for 50 Hz operation Also available for 60 Hz

≤ 3,5 Maintenance-free high-efficiency variable speed glandless drinking water ≤6 circulator pump, screw-ended, electric motor and continuously variable differential pressure control for use in drinking water supply systems and hot water supply systems.

Applications

Hot water supply, drinking water circulation systems and similar systems in industry and building services (e.g. cooling water recirculation).

http://shop.ksb.com/catalog/k0/en/product/ES000882

Circulators, variable speed

Calio S

H [m] p [bar] T [°C]

Q [m³/h]n [rpm]

 $\geq +2 - \leq +95$ ≤ 3000

Data for 50 Hz operation Also available for 60 Hz

1/2 - 1 1/4 Description

≤ 3,5 Maintenance-free high-efficiency screw-ended glandless pump with highefficiency electric motor and continuously variable differential pressure < 6 ≤ 10

Applications

Heating, ventilation, air-conditioning and heat recovery systems, cooling systems, industrial recirculation systems

Pumps 31

Calio

Rp DN Q [m³/h] ≤ 51 H [m] ≤ 18 p [bar] ≤ 16 T [°C] ≥ -10 - ≤ +110

> Data for 50 Hz operation Also available for 60 Hz

1 1/2 - 2 Description

32 - 100 Maintenance-free high-efficiency flanged or screw-ended glandless pump with high-efficiency electric motor and continuously variable differential pressure control.

Applications

≤ 4500

Heating, ventilation, air-conditioning and heat recovery systems, cooling systems, industrial recirculation systems

http://shop.ksb.com/catalog/k0/en/product/ES000881

Calio Z

Rp DN Q [m³/h]H [m] p [bar] T [°C]

32 - 65 ≤ 70 ≤ 18 ≤ 16 ≥ -10 - ≤ +110 n [rpm] < 4500

> Data for 50 Hz operation Also available for 60 Hz

1 1/4 Description

Maintenance-free high-efficiency flanged or screw-ended glandless pump in twin pump design with high-efficiency electric motor and continuously variable differential pressure control.

Applications

Heating, ventilation, air-conditioning and heat recovery systems, cooling systems, industrial recirculation systems

In-line pumps

Etaline L

Rp DN Q [m³/h] ≤ 95 H [m] ≤ 21 p [bar] < 10 T [°C] $\geq -15 - \leq +120$ Data for 50 Hz operation

Also available for 60 Hz

1 - 1 1/4 Description

32 - 80 Single-stage close-coupled in-line volute casing pump, with PumpDrive variable speed system and common motor/pump shaft

Heating systems, air-conditioning systems, cooling circuits, water supply systems (not approved for drinking water according to the German Environment Agency), service water supply systems, industrial recirculation systems, swimming pools

http://shop.ksb.com/catalog/k0/en/product/ES000925

Etaline DL

Rp DN 32 - 80 Q [m³/h]H [m] ≤21 p [bar] ≤ 10 T [°C] ≥ -15 - ≤ +120 Data for 50 Hz operation Also available for 60 Hz

1 1/4 Description

Single-stage close-coupled in-line volute casing pump as twin pump, with PumpDrive variable speed system and common motor/pump shaft

Applications

Heating systems, air-conditioning systems, cooling circuits, water supply systems (not approved for drinking water according to the German Environment Agency), service water supply systems, industrial recirculation

Etaline

DN Q [m³/h] H [m] p [bar] T [°C]

Data for 50 Hz operation

Also available for 60 Hz

< 16 ≥ -30 - ≤ +140

32 - 200 Description

≤ 700 Single-stage volute casing pump in in-line design, with magnetless ≤ 96 KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system; pump shaft and motor shaft are rigidly connected. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2: 2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available.

Hot water heating, cooling circuits, air-conditioning, water supply systems, service water supply systems, industrial recirculation systems

http://shop.ksb.com/catalog/k0/en/product/ES000113

Etaline Z

DN Q [m³/h]H [m] p [bar] T [°C]

> -30 - < +140 Data for 50 Hz operation Also available for 60 Hz

< 38.5

32 - 200 Description

≤ 1095 Single-stage volute casing pump in in-line design as twin pump, with magnetless KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system; pump shaft and motor shaft are rigidly connected. An M12 module (accessory) enables redundant operation of Etaline Z without the need for a higher-level controller. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2: 2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available.

Applications

Hot water heating, cooling circuits, air-conditioning, water supply systems, service water supply systems, industrial recirculation systems

http://shop.ksb.com/catalog/k0/en/product/ES000114

Etaline-R

DN Q [m³/h]H [m] p [bar] T [°C]

≤ 93 < 25 ≥ -30 - ≤ +140 Data for 50 Hz operation

Also available for 60 Hz

150 - 350 Description

< 1900 Vertical close-coupled in-line pump with volute casing and magnetless KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system.

Applications

Hot water heating, cooling circuits, air-conditioning, water supply systems, service water supply systems, industrial recirculation systems

http://shop.ksb.com/catalog/k0/en/product/ES000812

ILN

DN Q [m³/h]H [m] p [bar] T [°C] n [rpm]

≤ 112 ≤ 16 \geq -20 - \leq +70 ≤ 3000 Data for 50 Hz operation

Also available for 60 Hz

65 - 400 Description

 \leq 3100 Vertical in-line centrifugal pump with closed impeller and mechanical seal. ILNS fitted with an auxiliary vacuum pump, ILNE with ejector. Back pull-out design allows the impeller to be dismantled without removing the piping and the motor. ATEX-compliant version available.

Applications

Hot-water heating systems, cooling circuits, air-conditioning systems, marine applications, water and service water supply systems, cleaning systems and industrial recirculation systems

Control unit

Pumps 33

ILNC

DN Q [m³/h] < 370 H [m] ≤ 112 p [bar] ≤ 16 T [°C] ≥ -20 - ≤ +70 n [rpm] ≤ 3000 Data for 50 Hz operation

Also available for 60 Hz

32 - 125 Description

Vertical close-coupled centrifugal pump in in-line design, with electric motor, closed impeller and mechanical seal. ILNCS fitted with an auxiliary vacuum pump, ILNCE with ejector. Standardised IEC frame motor. ATEX-compliant

Applications

Hot-water heating systems, cooling circuits, air-conditioning systems, marine applications, water and service water supply systems, cleaning systems and industrial recirculation systems

Control unit

http://shop.ksb.com/catalog/k0/en/product/ES000731

Megaline

DN Q [m³/h] H [m] < 135 p [bar] ≤ 16 T [°C] ≥ 0 - ≤ +90 Data for 60 Hz operation

32 - 200 Description

Volute casing pump for horizontal or vertical installation, in back pull-out design, single-stage, radially split volute casing, replaceable casing wear rings. Volute casing in in-line design with closed radial impeller, with multiply curved vanes, single mechanical seal to EN 12756.

Heating circuits, water supply systems, air-conditioning systems, waste water, industrial recirculation systems

http://www.ksb.com.br/ksb-br-pt/pesquisa.php?_q=megaline

Standardised / close-coupled pumps

Etanorm

DN Q [m³/h] H [m] p [bar]

< 16

≥ -30 - ≤ +140

Data for 50 Hz operation Also available for 60 Hz

Horizontal volute casing pump, single-stage, with ratings and main dimensions to EN 733, long-coupled, back pull-out design, with replaceable shaft sleeves / shaft protecting sleeves and casing wear rings, with motor mounted variable speed system. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2: 2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in

accordance with DIN V 42673 (07-2011). ATEX-compliant version available. **Applications**

Pumping clean or aggressive liquids not chemically or mechanically aggressive to the pump materials in water supply systems, cooling water circuits, swimming pools, fire-fighting systems, irrigation systems, drainage systems, heating systems, air-conditioning systems, spray irrigation systems

http://shop.ksb.com/catalog/k0/en/product/ES00006

Etanorm-R

DN Q [m³/h] H [m] ≤ 101 p [bar] \geq -30 - \leq +140 Data for 50 Hz operation Also available for 60 Hz

125 - 300 Description

Horizontal long-coupled single-stage (two-stage for pump size 125-500) volute casing pump in back pull-out design, with replaceable shaft sleeves / shaft protecting sleeves and casing wear rings, with magnetless KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system; ATEXcompliant version available.

Applications

Water supply systems, spray irrigation systems, drainage systems, airconditioning systems, fire-fighting systems, general irrigation systems, heating

Etabloc

DN Q [m³/h] H [m] p [bar] T [°C]

Data for 50 Hz operation

< 16 ≥ -30 - ≤ +140

25 - 150 Description

≤ 660 Single-stage close-coupled volute casing pump, with ratings to EN 733, with ≤ 140 replaceable shaft sleeve and casing wear rings, with motor-mounted variable speed system. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2: 2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available.

Pumping clean or aggressive liquids not chemically or mechanically aggressive to the pump materials in water supply systems, cooling circuits, swimming pools, fire-fighting systems, irrigation systems, drainage systems, heating systems, air-conditioning systems, spray irrigation systems

Etachrom B

DN Q [m³/h]H [m] p [bar] T [°C]

> -30 - < +110 Data for 50 Hz operation Also available for 60 Hz

Also available for 60 Hz

25 - 80 Description

≤ 260 Horizontal single-stage close-coupled circular casing pump, with ratings and ≤ 105 main dimensions to EN 733, with replaceable casing wear rings and motormounted variable speed system. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2:2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available.

Applications

Cleaning systems (bottle rinsing, crate washing, etc.), water treatment plants, water supply systems, fire-fighting systems, spray irrigation systems, general irrigation systems, drainage systems, hot-water heating systems, airconditioning systems, industrial washing plants, general industry, disposal of paint sludge, surface treatment

http://shop.ksb.com/catalog/k0/en/product/ES000066

Etachrom L

DN Q [m³/h]H [m] p [bar]

T [°C]

≥ -30 - ≤ +110 Data for 50 Hz operation Also available for 60 Hz

25 - 80 Description

≤ 260 Horizontal single-stage circular casing pump, with ratings and main ≤ 105 dimensions to EN 733, with replaceable casing wear rings and motor-mounted variable speed system. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2:2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in

accordance with DIN V 42673 (07-2011). ATEX-compliant version available.

Cleaning systems (bottle rinsing, crate washing, etc.), water treatment plants, water supply systems, fire-fighting systems, spray irrigation systems, general irrigation systems, drainage systems, hot-water heating systems, airconditioning systems, industrial washing plants, general industry, disposal of paint sludge, surface treatment

http://shop.ksb.com/catalog/k0/en/product/ES000065

Etanorm V

DN Q [m³/h]H [m] p [bar] T [°C]

≥ -15 - ≤ +95 Data for 50 Hz operation Also available for 60 Hz

32 - 150 Description

≤ 12

≤ 100 ≤ 16

≤ 625 Single-stage volute casing pump for vertical installation in closed tanks under atmospheric pressure, with ratings to EN 733. Suitable for immersion depths of up to 2000 mm.

Applications

Phosphating solutions, lubricating oil supply and sealing oil supply for turbines, generators, large compressors, large gear units

Pumps 35

Meganorm

DN Q [m³/h] < 1160 H [m] ≤ 162 p [bar] ≤ 16 T [°C] ≥ -30 - ≤ +140 Data for 50 Hz operation

Also available for 60 Hz

25 - 200 Description

Horizontal radially split volute casing pump in back pull-out design, with radial impeller, single-entry, single-stage, to DIN EN ISO 2858/ISO 5199. Available with cylindrical or conical shaft seal chamber.

Applications

Water supply systems, dewatering systems, irrigation systems, sugar industry, alcohol industry, air-conditioning systems, building services systems, firefighting systems

http://www.ksb.com.br/ksb-br-pt/pesquisa.php?_q=Meganorm

Megabloc

DN 25 - 160 Q [m³/h] ≤ 550 H [m] p [bar] ≤ 16 T [°C] ≥ 0 - ≤ +90 Data for 60 Hz operation

Description

Volute casing pump for horizontal or vertical installation, back pull-out design, single-stage, radially split volute casing, flanged or screw-ended (optional), replaceable casing wear rings. Volute casing with closed radial impeller with multiply curved vanes, single mechanical seal to EN 12756.

Water supply systems, irrigation systems, air-conditioning systems, building services systems, hotels, shopping centres, etc., fire-fighting systems, cooling circuits, general industry

http://www.ksb.com.br/ksb-br-pt/pesquisa.php?_q=Megablo

Hot water pumps

HPK-L

DN Q [m³/h] H [m] p [bar] T [°C]

 \geq -40 - \leq +400 Data for 50 Hz operation

Also available for 60 Hz

25 - 250 Description ≤ 162

Horizontal radially split volute casing pump in back pull-out design to ISO 2858 / ISO 5199, single-stage, single-entry, with radial impeller. Equipped with heat barrier, seal chamber air-cooled by integrated fan impeller, no external cooling. ATEX-compliant version available.

Applications

Pumping hot water and thermal oil in piping systems or tank systems, particularly in medium-sized and large hot-water heating systems, forced circulation boilers, district heating systems

HPK

DN Q [m³/h]H [m] p [bar] T [°C]

≤ 185 ≤ 40 ≥ 0 - ≤ +400 Data for 50 Hz operation

Also available for 60 Hz

150 - 400 Description

 \leq 4150 Horizontal radially split volute casing pump in back pull-out design, with radial impeller, single-entry, single-stage, to ISO 2858 / ISO 5199. Optional TRD type testing by TÜV. ATEX-compliant version available.

Applications

Pumping hot water and thermal oil in piping systems or tank systems, particularly in medium-sized and large hot-water heating systems, forced circulation boilers, district heating systems

http://shop.ksb.com/catalog/k0/en/product/ES000034

HPH

Q [m³/h] H [m] ≤ 225 p [bar] ≤ 110 T [°C] $\geq 0 - \leq +320$ Data for 50 Hz operation

Also available for 60 Hz

40 - 350 Description

≤ 2350 Horizontal radially split volute casing pump in back pull-out design, with centreline pump feet, with radial impeller, single-entry, single-stage. Optional TRD type testing by TÜV. ATEX-compliant version available.

Applications

Pumping hot water in high-pressure hot water generation plants, as boiler feed or recirculation pump

Hot water / thermal oil pumps

Etanorm SYT / RSY

Q [m³/h]H [m] p [bar] T [°C] Data for 50 Hz operation

Also available for 60 Hz

Data for 50 Hz operation

Also available for 60 Hz

25 - 300 Description

≤ 1900 Horizontal volute casing pump in back pull-out design, single-stage, with ≤ 102 ratings and dimensions to EN 733, radially split volute casing with integrally cast pump feet, replaceable casing wear rings, closed radial impeller with multiply curved vanes, single mechanical seal to EN 12756, double mechanical seal to EN 12756, drive-end bearings: rolling element bearings, pump-end bearings: plain bearings, with magnetless KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system; ATEX-compliant version available.

Applications

Heat transfer systems, hot water recirculation

http://shop.ksb.com/catalog/k0/en/product/ES000790

Etabloc SYT

DN Q [m³/h]H [m] p [bar] T [°C]

≥ -30 - ≤ +350

25 - 80 Description

≤ 280 Volute casing pump for horizontal or vertical installation, back pull-out ≤ 68 design, single-stage, with ratings to EN 733, radially split volute casing, replaceable casing wear rings, volute casing with integrally cast pump feet, closed radial impeller with multiply curved vanes, single mechanical seal to EN 12756, product-lubricated carbon plain bearing, grease-lubricated radial ball bearing in the motor housing, with magnetless KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system, ATEX-compliant

Applications

Heat transfer systems, hot water recirculation

http://shop.ksb.com/catalog/k0/en/product/ES000791

Etaline SYT

DN Q [m³/h]H [m] p [bar] T [°C] ≥ -30 - ≤ +350

Data for 50 Hz operation

Also available for 60 Hz

32 - 100 Description < 16

≤ 316 Single-stage volute casing pump in in-line design, with magnetless KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system; pump shaft and motor shaft are rigidly connected. ATEX-compliant

Heat transfer systems, hot water recirculation

http://shop.ksb.com/catalog/k0/en/product/ES000789

Standardised chemical pumps

MegaCPK

DN Q [m³/h] H [m] p [bar] T [°C]

≤ 25

≥ -40 - ≤ +400

Data for 50 Hz operation Also available for 60 Hz

25 - 250 Description

≤ 1160 Horizontal radially split volute casing pump in back pull-out design, with ≤ 162 radial impeller, single-entry, single-stage, to DIN EN ISO 2858 / ISO 5199; also available as a variant with "wet" shaft and conical seal chamber. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2: 2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEXcompliant version available.

Applications

Pumping aggressive, toxic, explosive, valuable, flammable, malodorous or harmful liquids in the chemical and petrochemical industries, in refineries, power stations and desalination plants as well as in the food industry and general industry.

CPKN

 $\begin{array}{lll} DN & 150 - 400 \\ Q \ [m^3/h] & \leq 4150 \\ H \ [m] & \leq 185 \\ p \ [bar] & \leq 25 \\ T \ [^{\circ}C] & \geq -40 - \leq +400 \end{array}$

Data for 50 Hz operation
Also available for 60 Hz

150 - 400 Description

≤ 4150 Horizontal radially split volute casing pump in back pull-out design, with radial impeller, single-entry, single-stage, to ISO 2858 / ISO 5199. Also available as a variant with "wet" shaft, conical seal chamber and/or semi-open impeller (CPKNO). ATEX-compliant version available.

Applications

Pumping aggressive, toxic, explosive, valuable, flammable, malodorous or harmful liquids in the chemical and petrochemical industries, in refineries, power stations and desalination plants as well as in the food industry and general industry.

Seal-less pumps

Magnochem

DN Q [m³/h]H [m] p [bar] T [°C]

≤ 40 > -90 - < +350 Data for 50 Hz operation

25 - 250 Description

 \leq 1160 Horizontal seal-less volute casing pump in back pull-out design, with ≤ 162 magnetic drive, to DIN EN ISO 2858 / ISO 5199, with radial impeller, singleentry, single-stage. ATEX-compliant version available.

Applications

Pumping aggressive, toxic, explosive, valuable, flammable, malodorous or harmful liquids in the chemical, petrochemical and general industries.

http://shop.ksb.com/catalog/k0/en/product/ES000046

Magnochem 685

Q [m³/h] H [m] p [bar] T [°C]

≤ 40 ≥ -90 - ≤ +350 Data for 50 Hz operation Also available for 60 Hz

Also available for 60 Hz

25 - 250 Description

≤ 1160 Horizontal seal-less volute casing pump, with magnetic drive, radial impeller, ≤ 162 single-entry, single-stage. Design to ISO 15783 / API 685 (centreline mounting, ASME flanges, and twice the permissible nozzle forces). ATEX-compliant version available.

Applications

Pumping aggressive, toxic, explosive, valuable, flammable, malodorous or harmful liquids in the chemical, petrochemical and general industries.

Magnochem-Bloc

Q [m³/h]H [m] p [bar]

T [°C]

 \geq -40 - \leq +200 Data for 50 Hz operation Also available for 60 Hz

25 - 160 Description

≤ 625 Horizontal or vertical seal-less volute casing pump in close-coupled design, with magnetic drive, to DIN EN ISO 2858 / ISO 5199, with radial impeller, single-entry, single-stage. ATEX-compliant version available. ≤ 40

Applications

Pumping aggressive, toxic, explosive, valuable, flammable, malodorous or harmful liquids in the chemical, petrochemical and general industries.

http://shop.ksb.com/catalog/k0/en/product/ES000045

Etaseco / Etaseco-l

Q [m³/h]H [m] p [bar] T [°C]

≥ -40 - ≤ +140 Data for 50 Hz operation Also available for 60 Hz

32 - 100 Description

≤ 100

≤ 16

≤ 250 Horizontal or vertical seal-less volute casing pump in back pull-out design with fully enclosed canned motor, low noise emission, with radial impeller, single-stage, single-entry, casing connecting dimensions to EN 733, or in inline design.

Applications

Pumping aggressive, flammable, toxic, volatile or valuable liquids in the chemical and petrochemical industries, in environmental engineering and industrial applications.

http://shop.ksb.com/catalog/k0/en/product/ES000122

Etaseco RVP

DN Q [m³/h]H [m] p [bar] T [°C]

≤ 16 ≥ -50 - ≤ +110 Data for 50 Hz operation

Also available for 60 Hz

25 - 40 Description

≤ 44 Horizontal or vertical seal-less volute casing pump in back pull-out design ≤ 40 with fully enclosed canned motor, low noise emission, with radial impeller, single-stage, single-entry, casing connecting dimensions to EN 733, or in inline design.

Applications

Pumping toxic, volatile or valuable liquids in environmental engineering and industrial applications and as coolant pump in cooling systems. Transport vehicles, environmental engineering and industry; applications where low noise emission, smooth running or long service intervals are required.

Process pumps

RPH

N	25 - 400
[m³/h]	≤ 4150
[m]	≤ 270
[bar]	≤ 110
[°C]	≥ -70 - ≤ +450

Data for 50 Hz operation

Also available for 60 Hz

Description

Horizontal radially split volute casing pump in back pull-out design, to API 610, ISO 13709 (heavy-duty), type OH2, with radial impeller, single-entry, single-stage, centreline pump feet; with inducer if required. ATEX-compliant version available.

Refineries, petrochemical and chemical industries, power stations, offshore and onshore processes.

http://shop.ksb.com/catalog/k0/en/product/ES000040

RPH-LF

DN Q [m³/h]H [m] ≤ 339 T [°C] ≥ -30 - ≤ +200 Data for 50 Hz operation

Also available for 60 Hz

50 Description

Horizontal single-entry single-stage radially split overhung centrelinemounted process pump with circular casing and overhung impeller to API 610 (ISO 13709), type OH2. Special design for low flow rates. ATEX-compliant version available.

Applications

Refineries, petrochemical and chemical industries; applications with low flow

RPHb / RPHd

DN Q [m³/h] H [m] ≤ 530 p [bar] ≤ 100 T [°C] \geq -80 - \leq +450 Data for 50 Hz operation

Also available for 60 Hz

50 - 400 Description

≤ 4500 Heavy-duty horizontal radially split between-bearings volute casing pump to API 610, ISO 13709 (heavy duty), type BB2, with radial impellers, single- or double-entry, single- or two-stage design with centreline pump feet. ATEXcompliant version available.

Applications

Refineries, petrochemical and chemical industries, offshore and onshore processes

http://shop.ksb.com/catalog/k0/en/product/ES000041

RPH-V

DN2 / DN3 Q [m³/h] ≤ 80 H [m] ≤ 160 p [bar] ≤ 35 T [°C] ≥ -30 - ≤ +230 Data for 50 Hz operation

Also available for 60 Hz

Also available for 60 Hz

25 - 80 / 40 - 150 Description

Vertical radially split volute casing pump to API 610 and ISO 13709 (heavyduty), type VS4, with radial impeller, single-entry, single-stage.

Applications

Refineries, petrochemical and chemical industries, offshore and onshore processes.

http://shop.ksb.com/catalog/k0/en/product/ES000880

CTN

DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation

25 - 250 / 250 - 400 Description

≤ 950

≤ 115

≥ 0 - ≤ +300

≤ 16

Radially split vertical shaft submersible pump with double volute casing for wet and dry installation, with radial impeller, single-entry, single-stage or two-stage; heatable model available. ATEX-compliant version available.

Applications

Pumping chemically aggressive liquids, also slightly contaminated or with a low solids content, in the chemical and petrochemical industries.

CHTR

DN 50 - 300 [
Q [m³/h] \leq 1450 |
H [m] \leq 4000 |
p [bar] \leq 400 |
T [°C] \geq -60 - \leq +450 |
n [rpm] \leq 7000 |

n] ≤ 7000

Data for 50 Hz operation

Also available for 60 Hz

Higher ratings possible upon request

Description

≤ 1450 Horizontal high-pressure barrel-type pump with radial impellers, single-entry and double-entry, multistage, with flanges or weld end nozzles to DIN, API 610 and ANSI.

Applications

Refineries, petrochemical industry, steam generation, seawater injection in crude oil production (onshore and offshore)

http://shop.ksb.com/catalog/k0/en/product/ES000241

CHTRa

 $\begin{array}{lll} DN & 80 - 300 \\ Q \left[m^3/h \right] & \leq 1200 \\ H \left[m \right] & \leq 1550 \\ p \left[bar \right] & \leq 155 \\ T \left[^{\circ}C \right] & \geq -40 - \leq +205 \\ n \left[rpm \right] & \leq 6000 \end{array}$

Data for 50 Hz operation Also available for 60 Hz 80 - 300 Description

≤ 1200 Horizontal axially split single-entry multistage between-bearings volute casing solute casing pump with single casing and back-to-back impeller arrangement to API 610 (ISO 13709), type BB3. First stage optionally available in double-entry design for low NPSH requirements. ATEX-compliant version available.

Applications

Refineries, petrochemical industry, pipelines for crude oil and refinery products, water injection, feed water transport in power stations and industrial plants, mining, seawater desalination, reverse osmosis.

http://shop.ksb.com/catalog/k0/en/product/ES000933

CINCP / CINCN

32 - 200 Description

≤ 780 Vertical immersion pump in cantilever design for wet or dry installation. Semiopen impeller, pump shaft without guide bearings, supported by ball bearings in the upper section of the pump set. Supplied with discharge pipe extending above the baseplate (CINCP) or without discharge pipe (CINCN).
 ATEX-compliant version available.

Applications

 $\dot{\text{Chemical}}$ and petrochemical industries, raw materials extraction and waste water management.

http://shop.ksb.com/catalog/k0/en/product/ES000718

INVCP

DN
Q [m³/h]
H [m]
p [bar]
T [°C]
n [rpm]

 n^3/h] ≤ 1600 n] ≤ 116 ar] ≤ 10 r] ≥ -10 - ≤ +100 r] ≤ 3000 Data for 50 Hz operation

Also available for 60 Hz

32 - 300 Description

Vertical immersion pump for wet or dry installation, available with closed or semi-open impeller. Supplied with discharge pipe extending above the baseplate (INVCP) or without discharge pipe (INVCN). ATEX-compliant version available.

Applications

Pumping chemically aggressive, slightly contaminated or solids-laden fluids in the chemical and petrochemical industries.

http://shop.ksb.com/catalog/k0/en/product/ES000737

Estigia

DN 25 - 250 Q [m³/h] \leq H [m] \leq p [bar] \leq T [°C] \geq -30 - \leq +100 n [rpm] \leq

Data for 50 Hz operation

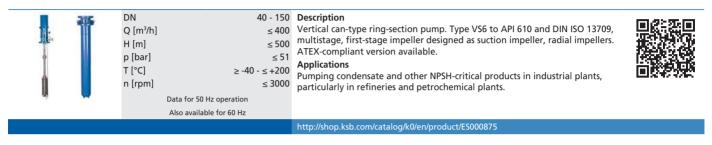
Also available for 60 Hz

25 - 250 Description

≤ 1160 Vertical immersion pump for wet installation with closed impeller, to
≤ 110 DIN EN ISO 5199 (with comments). Supplied with discharge pipe extending
above the cover plate, DN according to nominal flow rate. Sealing by lip seal,
single or double cartridge mechanical seal. ATEX-compliant version available.

Applications

Pumping chemically aggressive, slightly contaminated or solids-laden fluids in the chemical and petrochemical industries.


KSB SuPremE, PumpDrive, Frequency inverter

RWCP / RWCN

WKTR

Rainwater harvesting systems

Hya-Rain / Hya-Rain N

Rp	1
Q [m³/h]	≤ 4
H [m]	≤ 43
p [bar]	≤ 6
T [°C]	≥ 0 - ≤ +35
	Data for 50 Hz operation

Ready-to-connect package rainwater harvesting system in protective housing with automatic mains water back-up function if the rainwater storage tank is empty, with integrated dry running protection and demand-driven automatic pump control. Hya-Rain N version with analog level measurement in rainwater storage tank and integrated functional check run.

Rainwater harvesting and service water harvesting, general irrigation and spray irrigation systems

http://shop.ksb.com/catalog/k0/en/product/ES000256

Hya-Rain Eco

Description

 \leq 4 Basic ready-to-connect package rainwater harvesting system with automatic \leq 43 mains water back-up function if the rainwater storage tank is empty, with integrated dry running protection and demand-driven automatic pump control.

Applications

Rainwater harvesting and service water harvesting, general irrigation and spray irrigation systems

http://shop.ksb.com/catalog/k0/en/product/ES000600

Domestic water supply / swimming pool pumps

Multi Eco

Q [m³/h]H [m] p [bar] T [°C]

1 - 1 1/4 Description

Data for 50 Hz operation

Data for 50 Hz operation

≤8 Multistage self-priming centrifugal pump in close-coupled design. < 10 $\geq +4 - \leq +50$ ≤ 2800

≤ 54 Applications Single- or two-family houses, agricultural facilities, spray irrigation systems, general irrigation systems and washing plants, water supply and rainwater harvesting.

Controlmatic, Cervomatic

http://shop.ksb.com/catalog/k0/en/product/ES000085

Multi Eco-Pro

Q [m³/h]H [m] p [bar] T [°C] n [rpm]

≤ 10

 $\geq +4 - \leq +50$

≤8 Multistage self-priming centrifugal pump in close-coupled design, with power ≤ 54 cable, plug and Controlmatic E automatic control unit starting and stopping the pump in line with consumer demand and protecting it against dry running. Automated with automatic control unit.

Applications

Single- or two-family houses, agricultural facilities, spray irrigation systems, general irrigation systems and washing plants, water supply and rainwater

Multi Eco-Top

Rp 1 - 1 1/4
Q [m³/h] ≤ 8 H [m] ≤ 54 p [bar] ≤ 10 T [°C] $\ge +4 - \le +50$ n [rpm] ≤ 2800

1 - 1 1/4

≤ 8

≤ 54

≤ 10

Sescription

Multistage self-priming centrifugal pump in close-coupled design incl.
accumulator with replaceable membrane in drinking water quality, total volume 20 or 50 litres, pressure switch for automatic pump operation and 1.5metre power cable with plug.

Applications

Single- or two-family houses, agricultural facilities, spray irrigation systems, general irrigation systems and washing plants, water supply and rainwater harvesting.

http://shop.ksb.com/catalog/k0/en/product/ES000254

Ixo N

Control unit, Cervomatic

1 1/4 Description

Multistage close-coupled centrifugal pump for fully or partly submerged operation (min. immersion depth 0.1 m), with low-level inlet, suction strainer with a max. mesh width of 2.0 mm.

Applications

Water supply systems, spray irrigation systems, general irrigation systems, washing plants, rainwater harvesting and water extraction from wells, reservoirs and rainwater storage tanks

http://shop.ksb.com/catalog/k0/en/product/ES000007

Rp 1 $Q [m^3/h]$ ≤ 3,9 H [m] ≤ 60 $T [^{\circ}C]$ ≥ +5 - ≤ +35

Description

Multistage submersible borehole pump with integrated pressure switch, flow sensor and lift check valve. Electronic dry running protection with four consecutive start-up attempts; integrated capacitor. 15-metre H07 RN-F power cable with shockproof plug included.

Rainwater harvesting, pressure boosting, water extraction, irrigation systems

http://shop.ksb.com/catalog/k0/en/product/ES000896

Filtra N

Rp 2
Q [m³/h] ≤ 36
H [m] ≤ 21
p [bar] ≤ 2,5
T [°C] ≥ +4 - ≤ +35
n [rpm] ≤ 2800

2 Description

≤ 36 Single-stage self-priming centrifugal pump in close-coupled design.

21 Applications

Pumping clean or slightly contaminated water, swimming pool water with a max. chlorine content of 0.3~%; ozonised swimming pool water with a max. salt content of 7~%.

http://shop.ksb.com/catalog/k0/en/product/ES000090

Pressure booster systems

KSB Delta Macro F/VC/SVP

Rp 1 1/2 Q [m³/h] \leq 960 H [m] \leq 155 p [bar] \leq 16 T [°C] \geq 0 - ≤ +60 Data for 50 Hz operation

1 1/2 Description

≥ 960 Fully automatic package pressure booster system with two to six vertical highpressure pumps; available in cascade-controlled and two variable speed versions. Cascade control (F) for ensuring the required supply pressure. The VC and SVP versions ensure variable speed control of each pump by cabinetmounted frequency inverter (VC) or motor-mounted PumpDrive variable speed system and KSB SuPremE motor (SVP), respectively, providing fully electronic control to ensure the required supply pressure. Automated with BoosterControl.

Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.

KSB Delta Solo/Basic Compact MVP

Q [m³/h] H [m] p [bar]

< 10

 $\geq 0 - \leq +40$

1 / 1 1/2 Description

≤ 18 Fully automatic ready-to-connect package single-pump pressure booster ≤ 57 system / dual-pump pressure booster system with variable speed system

Applications

Domestic water supply, water supply systems, spray irrigation systems, general irrigation systems, service water systems, rainwater harvesting

http://shop.ksb.com/catalog/k0/en/product/ES000940

KSB Delta Basic MVP/SVP

Q [m³/h]H [m] p [bar] T [°C]

 $\geq 0 - \leq +60$ Data for 50 Hz operation

Data for 50 Hz operation

1 1/2 Description

≤ 16

 \leq 65,4 Fully automatic pressure booster system with two to three (MVP) / four (SVP) ≤ 134 vertical high-pressure pumps in two variable speed versions. The frequency inverter operated MVP and SVP versions ensure variable speed control of each pump by motor-mounted frequency inverter for asynchronous motors (MVP) or PumpDrive variable speed system and KSB SuPremE motor (SVP), respectively, providing fully electronic control to ensure the required supply pressure. Equipped with a central fuse box.

Applications

Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.

http://shop.ksb.com/catalog/k0/en/product/ES000942

KSB Delta Primo F/VC/SVP

Q [m³/h]H [m] p [bar]

≤ 134 ≤ 16 T [°C] $\geq 0 - \leq +60$

Data for 50 Hz operation

1 1/2 Description

 \leq 67,5 Fully automatic package pressure booster system with two to three (VC) / four (F/SVP) vertical high-pressure pumps; available in cascade-controlled and two variable speed versions. Cascade control (F) for ensuring the required supply pressure. The frequency inverter operated VC and SVP versions ensure variable speed control of each pump via cabinet-mounted frequency inverter (VC) or PumpDrive variable speed system and KSB SuPremE motor (SVP), respectively, providing fully electronic control to ensure the required supply

pressure. Automated with BoosterControl.

Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.

KSB Delta Solo MVP/SVP

Q [m³/h]H [m] p [bar]

≥ 0 - ≤ +60

1 1/4 Description

≤ 76 Fully automatic single-pump system available in two variable speed versions. The frequency inverter operated MVP and SVP versions ensure variable speed control of each pump by motor-mounted frequency inverter for asynchronous motors (MVP) or PumpDrive variable speed system and KSB SuPremE motor (SVP), respectively, providing fully electronic control to ensure the required supply pressure.

Applications

Water supply systems for residential buildings and office buildings, irrigation systems and rainwater harvesting systems, service water supply systems, in trade and industry.

http://shop.ksb.com/catalog/k0/en/product/ES000939

Hya-Solo D

DN Q [m³/h]H [m] p [bar]

< 160 ≤ 16 T [°C] $\geq 0 - \leq +70$

Data for 50 Hz operation

Data for 50 Hz operation

100 Fully automatic package single-pump system with 8-litre membrane-type accumulator. The system is started and stopped as a function of pressure.

Applications

Water supply systems for residential and office buildings, irrigation and spray irrigation, rainwater harvesting and service water supply systems in trade and industry.

Hya-Solo DSV

Rp		1	ı
DN		100	I
Q [m³/h]		≤ 110	I
H [m]		≤ 160	•
p [bar]		≤ 16	1
T [°C]		≥ 0 - ≤ +70	i
	Data for 50	Hz operation	i

Description

Fully automatic variable speed package single-pump system with PumpDrive 2 / PumpDrive 2 Eco. The system is started as a function of pressure and stopped as a function of flow.

Applications

Water supply systems for residential and office buildings, irrigation and spray irrigation, rainwater harvesting and service water supply systems in trade and industry

http://shop.ksb.com/catalog/k0/en/product/ES000251

Hya-Solo D FL

Rp		1
DN		100
Q [m ³ /h]		≤ 110
H [m]		≤ 160
p [bar]		≤ 16
T [°C]		≥ 0 - ≤ +70
	Data for 50	Hz operation

Description

Fully automatic package single-pump system. The system is started and stopped as a function of pressure. Design and function as per DIN 14462.

Applications

Fire-fighting systems to DIN 14462

http://shop.ksb.com/catalog/k0/en/product/ES000709

Hya-Duo D FL

Rp	2
DN	150
Q [m³/h]	≤ 110
H [m]	≤ 160
p [bar]	≤ 16
T [°C]	≥ 0 - ≤ +70

Data for 50 Hz operation

Description

Fully automatic package dual-pump system consisting of one duty system and one stand-by system to ensure system redundancy. Design and function as per DIN 14462.

Applications

Fire-fighting systems to DIN 14462

http://shop.ksb.com/catalog/k0/en/product/ES000710

Hya-Solo D FL Compact

NC	50 - 80	
Q [m³/h]	≤ 48	
H [m]	≤ 160	
[bar]	≤ 16	
Γ [°C]	≥ 0 - ≤ +70	
Data for 50 Hz operation		

Description

Fully automatic ready-to-connect break tank package booster set for fire fighting, comprising a single-pump system and break tank. The system is started and stopped as a function of pressure. Design and function as per DIN 14462.

Applications

Fire-fighting systems to DIN 14462

http://shop.ksb.com/catalog/k0/en/product/ES000821

Hya-Duo D FL Compact

ON	50 - 80
Q [m³/h]	≤ 48
H [m]	≤ 160
[bar]	≤ 16
Γ [°C]	≥ 0 - ≤ +70
	Data for 50 Hz operation

Description

Fully automatic ready-to-connect break tank package booster set for fire fighting, comprising one duty system and one stand-by system to ensure system redundancy. The system is started and stopped as a function of pressure. Design and function as per DIN 14462.

Applications

Fire-fighting systems to DIN 14462

Hyamat K

DN	250	
Q [m³/h]	≤ 660	
H [m]	≤ 160	
p [bar]	≤ 16	
T [°C]	≥ 0 - ≤ +70	
Data for 50 Hz operation		

2 Description

Fully automatic package pressure booster system with 2 to 6 vertical highpressure pumps and fully electronic control to ensure the required supply pressure, with volt-free changeover contact for general fault indication and broken wire detection (live-zero) of the connected sensors, design and function to DIN 1988. Automated with BoosterControl.

Applications

Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.

http://shop.ksb.com/catalog/k0/en/product/ES000247

Hyamat V

Rp	2	I
DN	250	F
Q [m³/h]	≤ 660	ŗ
H [m]	≤ 160	1
p [bar]	≤ 16	
T [°C]	≥ 0 - ≤ +70	í
1	Data for 50 Hz operation	

Description

Fully automatic package pressure booster system with 2 to 6 vertical highpressure pumps and continuously variable speed adjustment of one pump; for fully electronic control of the required supply pressure. Design and function as per DIN 1988. Automated with BoosterControl.

Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.

http://shop.ksb.com/catalog/k0/en/product/ES000417

Hyamat SVP

Data for 50 Hz operation

2 Description

250 Fully automatic package pressure booster system with 2 to 6 vertical high-≤ 660 pressure pumps and continuously variable speed adjustment of all pumps by PumpDrive; for fully electronic control of the required supply pressure. Design and function as per DIN 1988. Automated with BoosterControl and PumpDrive.

Applications

Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.

http://shop.ksb.com/catalog/k0/en/product/ES000418

Hyamat SVP ECO

Rp		2	I
DN		250	F
Q [m³/h]		≤ 660	ŀ
H [m]		≤ 160	1
p [bar]		≤ 16	
T [°C]		≥ 0 - ≤ +70	F
	Data for 50	Hz operation	,

Description

Fully automatic package pressure booster system with 2 to 6 vertical highpressure pumps and continuously variable speed adjustment of all pumps by PumpDrive; for fully electronic control of the required supply pressure. Design and function as per DIN 1988. Automated with PumpDrive.

Applications

Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.

Surpresschrom SIC.2

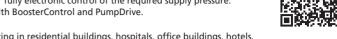
Rp		2	I
DN		250	
Q [m³/h]		≤ 660	
H [m]		≤ 160	
p [bar]		≤ 16	,
T [°C]		≥ 0 - ≤ +70	
	Data for 50	Hz operation	I

Fully automatic package pressure booster system with 2 to 6 vertical highpressure pumps, with fully electronic control system ensuring the required supply pressure, with volt-free changeover contact for general fault indication and broken wire detection (live-zero) of the connected sensors. Automated with BoosterControl.

Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industrial plants, etc.

Surpresschrom SIC.2 V

Rp	2	
DN	250	F
Q [m³/h]	≤ 660	ŗ
H [m]	≤ 160	1
p [bar]	≤ 16	,
T [°C]	≥ 0 - ≤ +70	F


Data for 50 Hz operation

Description

Fully automatic package pressure booster system with 2 to 6 vertical highpressure pumps. Continuously variable speed adjustment of one pump with PumpDrive for fully electronic control of the required supply pressure. Automated with BoosterControl and PumpDrive.

Applications

Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industrial plants, etc.

http://shop.ksb.com/catalog/k0/en/product/ES000702

Surpresschrom SIC.2 SVP

₹р		2	-
ON		250	I
Q [m³/h]		≤ 660	-
H [m]		≤ 160	
[bar]		≤ 16	
Γ [°C]		≥ 0 - ≤ +70	í
	Data for 50	Hz operation	(

Description

Fully automatic package pressure booster system with 2 to 6 vertical highpressure pumps. Continuously variable speed adjustment of all pumps with PumpDrive for fully electronic control of the required supply pressure. Automated with BoosterControl and PumpDrive.

Applications

Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industrial plants, etc.

http://shop.ksb.com/catalog/k0/en/product/ES000701

Surpress Feu SFE

٠.١٦	
Q [m ³ /h]	
H [m]	
p [bar]	
T [°C]	
	Data fo

≤ 10 ≥ 0 - ≤ +70 or 50 Hz operation

2 1/2 Description

≤ 40 Fully automatic pressure booster system with two horizontal close-coupled ≥ 76 pumps (one pump on stand-by duty). Design complies with APSAD regulation R5. Pressure-controlled starting and stopping. Automated with BoosterControl.

Applications

Water supply and pressure boosting for wall hydrants, fire protection.

http://shop.ksb.com/catalog/k0/en/product/ES000441

Drainage pumps / waste water pumps

Ama-Drainer N

Q [m³/h] H [m]

1 1/4 - 1 1/2 Description

≤ 16,5 Vertical single-stage fully floodable submersible motor pump in close-coupled ≤ 12 design, IP68, with or without level control, max. immersion depth: 2 m.

$\geq 0 - \leq +50$ Applications

Automatic drainage of pits, shafts, yards and cellars at risk of flooding, lowering of surface water levels, drainage, drainage of underground passages, water extraction from rivers and reservoirs.

Control unit, LevelControl

http://shop.ksb.com/catalog/k0/en/product/ES000771

Ama-Drainer 4../5..

Rp Q [m³/h] H [m] T [°C]

 $\geq 0 - \leq +40$ Data for 50 Hz operation Also available for 60 Hz

Data for 50 Hz operation

Also available for 60 Hz

1 1/2 - 2 Description

≤ 24

Vertical single-stage fully floodable submersible motor pump in close-coupled ≤ 50 design, IP68, with or without level control, max. immersion depth: 7 m.

Applications

Automatic drainage of pits, shafts, yards and cellars at risk of flooding, lowering of surface water levels, drainage, drainage of underground passages, water extraction from rivers and reservoirs.

Control unit, LevelControl

Ama-Drainer 80, 100

DN Q [m³/h]H [m] T [°C]

 $\geq 0 - \leq +50$

Data for 50 Hz operation

Also available for 60 Hz

100 Vertical single-stage fully floodable submersible motor pump in close-coupled ≤ 130 design, IP68, with or without level control, max. immersion depth: 10 m.

≤ 26 Applications

Automatic drainage of pits, shafts, yards and cellars at risk of flooding, lowering of surface water levels, drainage, drainage of underground passages, water extraction from rivers and reservoirs.

Control unit, LevelControl

http://shop.ksb.com/catalog/k0/en/product/ES000079

Ama-Porter F / S

Q [m³/h]H [m] T [°C]

Data for 50 Hz operation

50 - 65 Description

≤ 40 Vertical single-stage fully floodable submersible waste water pump in close-≤ 16 coupled design (grey cast iron variant), non-explosion-proof.

Handling waste water, especially waste water containing long fibres and solid substances, liquids containing gas/air, removing waste water from flooded rooms and surfaces.

Control unit, LevelControl

http://shop.ksb.com/catalog/k0/en/product/ES000082

Rotex

Q [m³/h] H [m] T [°C] n [rpm] Installation depth [m]

1 1/4 - 2 Description

≥ 0 - ≤ +90 ≤ 2900 ≤ 1,7

 \leq 24 Vertical single-stage centrifugal pump with discharge to the top and parallel ≤ 14 with the pump shaft, pump base designed to act as suction strainer. Pump and motor are rigidly connected by a support column. Supplied ready to be plugged in, with 1.5-metre power cable and level switch.

Applications

Automatic drainage of buildings, pits and tanks, lowering of surface water levels and drainage.

http://shop.ksb.com/catalog/k0/en/product/ES000012

MK / MKY

DN Q [m³/h]H [m] T [°C] n [rpm]

< 19 ≥ -10 - ≤ +200 Installation depth [m]

> Data for 50 Hz operation Also available for 60 Hz

> Data for 50 Hz operation

50 Vertical submersible pump with three-channel impeller, volute casing ≤ 36 designed as inlet strainer.

Applications

Pumping condensate and heat transfer fluids below boiling point, condensate return systems, primary and secondary heating circuits, for direct installation in heating tanks or heat exchangers in the secondary circuits of heat transfer ≤ 2,8 systems (MKY).

Control unit, LevelControl

http://shop.ksb.com/catalog/k0/en/product/ES000013

Lifting units / package pump stations

Amaclean

Ø [mm] Installation depth [m]

1000 - 1800 Description

50 - 100 Self-cleaning tank insert for grouted installation in new concrete structures or in concrete structures in need of refurbishment. Designed to prevent soiling of the structure and clogging of the pumps by heavily waste or fibre loaded waste water. Suitable for pump stations emitting unpleasant odours and/or gases.

Waste water disposal, rainwater disposal

Ama-Drainer-Box Mini

DN Q [m³/h] H [m] T [°C]

Data for 50 Hz operation

40 Description

≤ 10 Reliable and compact waste water lifting unit in a modern design with activated carbon filter meeting hygiene requirements and with shower ≤ 6,5 connection as standard; complies with EN 12050-2 ≤ +50

Applications

Automatic disposal of waste water from washbasins, showers, washing machines and dishwashers. Use mini-Compacta sewage lifting unit for handling sewage from urinals and toilets.

http://shop.ksb.com/catalog/k0/en/product/ES000862

Ama-Drainer-Box

Q [m³/h] H [m] T [°C]

Data for 50 Hz operation Also available for 60 Hz

40 - 50 Description

≤ 46 Stable above-floor plastic collecting tank or impact-resistant underfloor plastic collecting tank, with floor drain and odour trap, both with Ama-Drainer submersible motor pump starting and stopping automatically and swing check valve

Applications

Automatic disposal of waste water from washbasins, showers, washing machines, garage driveways, basements and rooms prone to flooding

http://shop.ksb.com/catalog/k0/en/product/ES000262

Evamatic-Box N

DN Q [m³/h] H [m]

Data for 50 Hz operation

≤ +40

50 - 65 Description

 \leq 40 Floodable lifting unit for domestic waste water, equipped with either one or two pumps of type Ama-Porter F (free-flow impeller) or Ama-Porter S (cutter) ≤ 21

Applications

Disposal of domestic and municipal waste water occurring below the flood level

http://shop.ksb.com/catalog/k0/en/product/ES000430

mini-Compacta

DN Q [m³/h] H [m] T [°C]

Data for 50 Hz operation Also available for 60 Hz

32 - 100 Description

≤ 36 Floodable single-pump sewage lifting unit or dual-pump sewage lifting unit for automatic disposal of domestic waste water and faeces in building ≤ 25 sections below the flood level.

≤ +40 Applications

Basement flats, bars, basement party rooms, basement saunas, cinemas, theatres, department stores, hospitals, hotels, restaurants, schools.

http://shop.ksb.com/catalog/k0/en/product/ES000261

Compacta

DN Q [m³/h] H [m] T [°C]

Data for 50 Hz operation

80 - 100 Description

≤ 140 $\leq 24,5$ ≤ +40

Floodable single-pump sewage lifting unit or dual-pump sewage lifting unit for automatic disposal of waste water and faeces in buildings and building sections below the flood level.

Applications

Basement flats, bars, basement party rooms and saunas, cinemas and theatres, department stores and hospitals, hotels, restaurants, schools, other public buildings, industrial facilities, underground train stations or for joint sewage disposal from rows of houses.

CK 800 Pump Station

Q [m³/h] H [m] T [°C]

Data for 50 Hz operation

32 - 50 Description

≤ 22 Single-pump station / dual-pump station as ready-to-connect package system, ≤ 49 with PE-LLD (polyethylene) collecting tank for buried installation. Equipped with either one or two submersible waste water pumps of type Amarex N S

(explosion-proof or non-explosion-proof) or Ama-Porter (non-explosionproof). Tank design to DIN 1986-100 and EN 752/EN 476.

Applications

Drainage of buildings and premises, waste water disposal, premises renovation, joint sewage disposal for multiple residential units, pumped

http://shop.ksb.com/catalog/k0/en/product/ES000778

CK 1000 Pump Station

DN Q [m³/h]H [m] T [°C]

Data for 50 Hz operation

50 - 65 Description

≤ 50 Single-pump station / dual-pump station as ready-to-connect package system,

with PE-LLD (polyethylene) collecting tank for buried installation. Equipped

with either one or two submersible waste water pumps of type Amarex N (explosion-proof or non-explosion-proof) or Ama-Porter (non-explosionproof). Tank design to DIN 1986-100 and EN 752/EN 476.

Applications

Drainage of buildings and premises, waste water disposal, premises renovation, joint sewage disposal for multiple residential units, pumped

http://shop.ksb.com/catalog/k0/en/product/ES000266

Ama-Porter CK Pump Station

DN Q [m³/h]H [m] T [°C]

Data for 50 Hz operation

50 - 65 Description

 \leq 40 Single-pump station / dual-pump station as ready-to-connect package system,

with PE-LLD (polyethylene) collecting tank for buried installation. Equipped ≤ 16 with either one or two submersible waste water pumps of type Ama-Porter

≤ +40 (non-explosion-proof). Tank design to DIN 1986-100 and EN 752/EN 476.

Applications

Drainage of buildings and premises, waste water disposal, premises renovation, joint sewage disposal for multiple residential units, pumped

http://shop.ksb.com/catalog/k0/en/product/ES000498

SRP

DN Q [m³/h]H [m] T [°C]

Data for 50 Hz operation Also available for 60 Hz

50 - 150 Description

 \leq 500 Single-pump station or dual-pump station as ready-to-connect package

system, with fibreglass collecting tank for buried installation ≤ 75

Applications

Premises renovation, disposal of domestic, municipal and industrial waste water, joint sewage disposal for multiple residential units

Control unit, LevelControl

http://shop.ksb.com/catalog/k0/en/product/ES000443

SRL

DN Q [m³/h]H [m] T [°C]

Data for 50 Hz operation

65 - 150 Description

≤ 500 Package pump station with tank made of glass fibre reinforced polyester, equipped with two dry-installed Sewabloc pumps with a rating of 2.2 to ≤ 55 30 kW, integrated valves and a control unit with frequency inverters. Pump

operation is adjusted in line with flow rate demand, thus minimising energy costs. This maintenance-friendly pump station prevents intermediate storage of waste water and the related odour nuisance.

Joint disposal of domestic, municipal and industrial waste water to the sewer system / waste water treatment plant

SRS

DN Q [m³/h] H [m] T [°C]

C]

Data for 50 Hz operation

Also available for 60 Hz

50 - 65 Description

≤ 50 Package pump station with tank made of glass fibre reinforced polyester for underfloor installation and two submersible waste water pumps mounted on duckfoot bends, with two guide systems. Complete discharge line made of PVC with ball valves and ball check valves fitted in the tank.

Applications

Stormwater disposal, grey water disposal, waste water disposal

LevelControl

Submersible motor pumps

Amarex

DN Q [m³/h]H [m] T [°C]

Data for 50 Hz operation Also available for 60 Hz

50 - 150 Description

 \leq 320 Vertical single-stage submersible motor pump for wet installation, with free-≤ 42 flow impeller (F-max) or open dual-vane impeller (D-max), stationary or transportable version. Single-stage, single-entry close-coupled pump sets which are not self-priming. ATEX-compliant version available.

Waste water transport, waste water management, drainage systems, waste water treatment plants, stormwater transport, recirculation, sludge treatment

http://shop.ksb.com/catalog/k0/en/product/ES000979

Amarex N

DN Q [m³/h]H [m] T [°C]

Data for 50 Hz operation Also available for 60 Hz

32 - 100 Description

≤ 190 Vertical single-stage submersible motor pump for wet installation, with cutter \leq 49 (S), free-flow impeller (F) or diagonal single-vane impeller (D), stationary or transportable version. Amarex N pumps are floodable, single-stage, singleentry close-coupled pump sets which are not self-priming. ATEX-compliant version available.

Pumping waste water, especially untreated waste water containing long fibres and solid substances, liquids containing gas or air, and raw, activated and digested sludge; dewatering and water extraction, drainage of rooms and areas at risk of flooding.

http://shop.ksb.com/catalog/k0/en/product/ES000507

Control unit, LevelControl

Amarex KRT

PumpDrive, Amacontrol, LevelControl

DN Q [m³/h] H [m] T [°C]

n [rpm] Data for 50 Hz operation Also available for 60 Hz

40 - 700 Description

≤ 120

 \leq 10080 Horizontal or vertical single-stage submersible motor pump in close-coupled design, with various next-generation impeller types, for wet or dry installation, stationary or transportable version, with energy-saving motor and models for use in potentially explosive atmospheres.

Applications

Pumping all types of waste water in water and waste water management, seawater desalination and industry, especially untreated waste water containing long fibres and solid substances, liquids containing gas or air, and raw, activated and digested sludge.

Submersible pumps in discharge tubes

Data for 50 Hz operation

Also available for 60 Hz

Amacan K

DN Q [m³/h]H [m] T [°C]

n [rpm]

< 30 ≥ 0 - ≤ +40

700 - 1400 Description

 \leq 5400 Wet-installed submersible motor pump for installation in discharge tubes, with channel impeller, single-stage, single-entry. ATEX-compliant version $\,$ available.

Handling pre-cleaned chemically neutral waste water, industrial effluent and sewage, fluids not containing any stringy substances, pre-treated by screens or overflow sills; as waste water, mixed sewage and activated sludge pumps in waste water treatment plants, irrigation and drainage pumping stations.

http://shop.ksb.com/catalog/k0/en/product/ES000100

Amacontrol

Amacan P

DN Q [m³/h] H [m] T [°C] ≥ 0 - ≤ +40 n [rpm] ≤ 1450

Data for 50 Hz operation

Also available for 60 Hz

500 - 1500 Description

 \leq 25200 Wet-installed submersible motor pump for installation in discharge tubes, ≤ 12 with axial propeller in ECB design, single-stage, single-entry. ATEX-compliant version available.

Applications

Irrigation and drainage pumping stations, for stormwater transport in stormwater pumping stations, raw and clean water transport in water and waste water treatment plants, cooling water transport in power stations and industrial plants, industrial water supply, water pollution control and flood control, aquaculture.

Amacontrol

http://shop.ksb.com/catalog/k0/en/product/ES000099

Amacan S

Amacontro

DN 650 - 1300 Description Q [m³/h]≤ 40 H [m] $\geq 0 - \leq +40$ Applications T [°C] ≤ 1450 n [rpm] Data for 50 Hz operation

Also available for 60 Hz

 \leq 10800 Wet-installed submersible motor pump for installation in discharge tubes, with mixed flow impeller, single-stage. ATEX-compliant version available.

Pumping water not containing stringy material in irrigation and drainage pumping stations, general water supply systems, water pollution and flood control.

Mixers / agitators / tank cleaning units

Amamix

Propeller Ø [mm] T [°C] Installation depth

> Data for 50 Hz operation Also available for 60 Hz

200 - 600 Description

 $\geq 0 - \leq +40$ Horizontal submersible mixer with self-cleaning ECB propeller, close-coupled ≤ 30 design, direct drive. ATEX-compliant version available.

Handling municipal and industrial waste water and sludges as well as applications in environmental engineering.

Amacontrol

http://shop.ksb.com/catalog/k0/en/product/ES000268

Amaprop

Propeller Ø [mm] T [°C] Installation depth

Also available for 60 Hz

1000 - 2500 Description

 $\geq 0 - \leq +40$ Horizontal submersible mixer with self-cleaning ECB propeller, close-coupled ≤ 12 design, with coaxial spur gear drive. ATEX-compliant version available.

In environmental engineering, particularly in municipal and industrial waste water and sludge treatment, for circulating, keeping in suspension and inducing flow in nitrification tanks and denitrification tanks, activated sludge tanks, biological phosphate elimination tanks, flocculation tanks and sludge storage tanks

http://shop.ksb.com/catalog/k0/en/product/ES000271

Amaline

Amacontrol

DN Q [m³/h]H [m] T [°C]

Data for 50 Hz operation Also available for 60 Hz

200 - 800 Description

≤ 2,5

≥ 0 - ≤ +40 ≤ 1450

 \leq 6600 Wet-installed horizontal propeller pump with submersible motor, equipped with direct drive or spur gear, ECB propeller with rigid, fibre-repellent blades, bolt-free connection to the discharge pipe. Explosion-proof version available.

Recirculating activated sludge in waste water treatment systems.

Amacontrol

Pumps for solids-laden fluids

Sewatec

DN Q [m³/h]H [m] p [bar] T [°C] n [rpm]

≤ 115 < +70 ≤ 2900 Data for 50 Hz operation

50 - 700 Description

≤ 10000 Volute casing pump for horizontal or vertical installation, with various nextgeneration impeller types, discharge flange to DIN and ANSI standards. Explosion-proof version available.

≤ 10 **Applications**

Waste water transport, waste water disposal, waste water management, transport of contaminated surface water, sludge treatment

PumpDrive, Amacontrol, LevelControl

http://shop.ksb.com/catalog/k0/en/product/ES000068

Sewatec SPN

DN Q [m³/h] H [m] p [bar] T [°C]

Data for 50 Hz operation Also available for 60 Hz

Also available for 60 Hz

≤ 1200 Description

≤ 32400 Vertical volute casing pump with multi-channel impellers (K), discharge flange to DIN and ANSI standards.

Applications < 16

Waste water transport, waste water disposal, waste water management, transport of contaminated surface water

Sewabloc

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]

Data for 50 Hz operation Also available for 60 Hz

50 - 200 Description

< 2900

≤ 1000 Close-coupled volute casing pump for horizontal or vertical installation, with various next-generation impeller types, discharge flange to DIN and ANSI ≤ 90 standards. Explosion-proof version available. ≤ 10

Applications ≤+70

Waste water transport, waste water disposal, waste water management. transport of contaminated surface water, sludge treatment

PumpDrive, LevelControl

http://shop.ksb.com/catalog/k0/en/product/ES000069

KWP

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]

≤ 100 ≤ 10 \geq -40 - \leq +140 ≤ 2900 Data for 50 Hz operation Also available for 60 Hz

40 - 900 Description

≤ 15000 Horizontal radially split volute casing pump in back pull-out design, singlestage, single-entry, available with various impeller types: closed multi-channel impeller, open multi-vane impeller and free-flow impeller. ATEX-compliant version available.

Applications

Paper industry, cellulose industry, sugar industry, food industry, power plants, chemical industry, petrochemical industry, flue gas desulphurisation, coal upgrading plants, industrial engineering, waste water transport, seawater desalination / reverse osmosis

http://shop.ksb.com/catalog/k0/en/product/ES000018

KWP-Bloc

PumpDrive

DN n [rpm]

Q [m³/h] H [m] p [bar] T [°C]

≤ 10 ≥ -40 - ≤ +100 ≤ 2900 Data for 50 Hz operation

Also available for 60 Hz

40 - 900

≤ 325 Horizontal or vertical radially split close-coupled volute casing pump, singlestage, single-entry, available with various impeller types: closed multi-channel impeller, open multi-vane impeller and free-flow impeller.

Applications

Paper industry, cellulose industry, sugar industry, food industry, chemical industry, petrochemical industry, flue gas desulphurisation, industrial engineering, waste water transport

PumpDrive

Slurry pumps

WBC

≤ 16200 Description

≤ 80 Patented design with state-of-the-art hydraulic system and highly wear-≤ 32 resistant materials for high-pressure applications. The pump casing is designed to withstand maximum stresses, e.g. during pressure surges. ≥ -20 - ≤ +120

Applications

Ideal for the single-stage or multistage transport of ore and tailings and for dredging.

http://shop.ksb.com/catalog/k0/en/product/ES000227

LSA-S

Q [m³/h]H [m] p [bar] T [°C]

≤ 18000 Description

≥ -20 - ≤ +120

≤ 150 Premium design white cast iron pump for long service life handling severe ≤ 17 slurries. The maintenance-friendly single-wall construction and heavy section white cast iron wet end combined with the cartridge bearing assembly

provide maximum reliability, a long service life and ease of maintenance. Applications

Ore and tailings transport, cyclone feed, dredging (dry-installed or submerged operation) and industrial processes.

http://shop.ksb.com/catalog/k0/en/product/ES000220

LCC-M

Q [m³/h]H [m] p [bar] T [°C]

≤ 3200 Description

 \leq 90 The wetted pump end (casing, impeller and suction plate / liner) is made of ≤ 16 white cast iron. Design optimised to permit easy dismantling and reassembly for maintenance and inspections. ≤+120

Applications

Reliable pump for high heads and moderately corrosive slurries. Used in mine dewatering, ash and tailings transport and dredging.

LCC-R

Q [m³/h]H [m] p [bar] T [°C]

≤ 2560 Description

≤ 42 Interchangeable rubber-lined or part-metal design allows adaptation of ≤ 16 existing pumps to new applications by simply exchanging the pump wet end.

Applications ≤ +65

The pumps are suitable for moderate heads, fine particles and highly corrosive slurries.

http://shop.ksb.com/catalog/k0/en/product/ES000218

TBC

Q [m³/h]H [m] p [bar] T [°C]

≤ 18200 Description

≤ 90 Horizontal high-pressure end-suction centrifugal pump offering maximum ≤ 37 resistance to wear and ease of maintenance. The conventional single-wall design transfers stress loads from the wear plates to the casing covers in high-≥ -20 - ≤ +120 pressure applications. Pump components made of highly wear-resistant white cast iron.

Applications

High-head high-flow hydrotransport of tailings, dredged material, pipeline booster stations and other severe duties.

LCV

Q [m³/h]H [m] ≤ 38 p [bar]

≤ 2045 Description

Rugged vertical shaft submersible pump with casing, impeller and suction plate / liner made of white cast iron, bearing assembly located outside the fluid handled. Replaceable wetted parts made of white cast iron or natural rubber.

Applications

Particularly suitable for use in industrial processes and for transporting tailings in mines and pits.

http://shop.ksb.com/catalog/k0/en/product/ES000016

FGD

Q [m³/h] H [m] p [bar] T [°C]

T [°C]

≤ 23000 Description ≤ 10

≥ -20 - ≤ +120

≤+120

 \leq 30 High-flow / low-head white cast iron pump with single-wall casing and highefficiency impeller. Single-piece suction cover with integrated mounting

Applications

Flue gas desulpurisation systems and process circuits

http://shop.ksb.com/catalog/k0/en/product/ES000231

MHD

Q [m³/h] H [m] p [bar] T [°C]

≤ 90000 Description

≥ -20 - ≤ +120

≤ 13

 \leq 115 Horizontal volute casing pump for high-volume hydrotransport of solids. For pumping slurries of large and very large particle sizes with a very good suction behaviour and high efficiency. Pump components made of white cast

Applications

Ideal for pipeline pressure booster stations and severe mining duties. Highly suitable for loading and unloading duties on (cutter) suction dredgers.

http://shop.ksb.com/catalog/k0/en/product/ES000224

LHD

Q [m³/h]H [m] p [bar] T [°C]

≥ -20 - ≤ +120

≤ 30000 Description

≤ 105 Horizontal volute casing pump for high-volume hydrotransport of solids. For ≤ 15 pumping slurries of large and very large particle sizes with a very good suction behaviour and high efficiency. Used in low-pressure applications. Pump components made of white cast iron.

Applications

Ideal for handling sand and gravel, on dredgers for land reclamation and as booster pumps.

http://shop.ksb.com/catalog/k0/en/product/ES000223

MDX

Q [m³/h] H [m] p [bar] T [°C]

≤ 14000 Description

 \geq -20 - \leq +120

≤ 16

 \leq 90 Pump designed with the latest technology from GIW. Superior wear properties and extremely long service life handling aggressive slurries.

Applications

Designed for SAG and ball mill discharge duties, cyclone feed, screen feed and other ore mining and treatment processes.

ZW

Q [m³/h]
H [m]
p [bar]
T [°C]

 \leq 35 Rugged vertical shaft submersible pump with casing, impeller and suction ≤ 10
≤ 10 cover made of white cast iron, top and bottom impeller inlet. Long-life bearings not exposed to fluid handled. Replaceable wetted components.

Applications

Particularly suitable for pumping abrasive slurries, dewatering, floor clean-up and process applications.

http://shop.ksb.com/catalog/k0/en/product/ES000852

HVF

≤ 50 The pump provides continuous operation without shutdown or operator intervention. The new hydraulic design removes air from the impeller eye ≤+120

For use in all froth pumping applications in the mineral processing and industrial minerals industries.

Self-priming pumps

H_{qeo} [m]

Etaprime L

DN Q [m³/h] H [m] ≤ 85 p [bar] ≤ 10 >-30 - \le +90 T [°C]

Data for 50 Hz operation Also available for 60 Hz

25 - 125 Description

≤ 180 Horizontal self-priming volute casing pump, single-stage, with open multivane impeller, from size 40-40-140 with bearing bracket, in back pull-out design, ATEX-compliant version available.

Applications

Pumping clean, contaminated or aggressive fluids not containing abrasive substances and solids. For use in spray irrigation systems, service water systems, drainage, dewatering systems, fire-fighting systems, drawdown of groundwater levels, domestic water supply, air-conditioning systems, cooling circuits, swimming pools, water supply systems.

http://shop.ksb.com/catalog/k0/en/product/ES000120

59

Etaprime B

DN Q [m³/h]≤ 130 H [m] ≤ 70 p [bar] ≤ 10 T [°C] ≥ -30 - ≤ +90 H_{geo} [m]

Data for 50 Hz operation Also available for 60 Hz

25 - 100 Description

Horizontal self-priming volute casing pump, single-stage, with open multivane impeller, close-coupled; pump shaft and motor shaft rigidly connected; ATEX-compliant version available.

Applications

Pumping clean, contaminated or aggressive fluids not containing abrasive substances and solids. For use in spray irrigation systems, service water systems, drainage, dewatering systems, fire-fighting systems, drawdown of groundwater levels, domestic water supply, air-conditioning systems, cooling circuits, swimming pools, water supply systems.

EZ B/L

DN Q [m³/h]< 21 H [m] ≤ 160 p [bar] ≤ 16 T [°C] ≥ -5 - ≤ +80 n [rpm] ≤ 1500

> Data for 50 Hz operation Also available for 60 Hz

25 - 50 Description

Self-priming multistage liquid ring pump in close-coupled (EZ B) or longcoupled (EZ L) design, with mechanical seal.

Applications

Boiler feed, sanitary hot water, hydrophore systems for fresh or seawater and fresh water pre-heating.

AU

Q [m³/h] < 600 H [m] ≤ 52 p [bar] ≤ 10 T [°C] ≥ -10 - ≤ +80 Data for 50 Hz operation

Also available for 60 Hz

40 - 200 Description

Horizontal self-priming centrifugal pump, open or semi-open impeller, adjusted via wear plate, with mechanical seal, ATEX-compliant version

Applications

Pumping clean, contaminated and aggressive fluids also containing solids. In fresh water and seawater circuits, fire-fighting applications, as ballast and bilge pumps, and for drainage and waste water applications.

AU Monobloc

Q [m³/h]H [m] p [bar] T [°C]

DN

≤ 37 ≤ 10 ≥ -10 - ≤ +80 Data for 50 Hz operation

Also available for 60 Hz

≤ 53 Horizontal self-priming centrifugal pump in close-coupled design, open or semi-open impeller, adjusted via wear plate, with mechanical seal, driven by electric motors or internal combustion engines; ATEX-compliant version available.

Applications

Pumping clean, contaminated and aggressive fluids also containing solids. In fresh water and seawater circuits, fire-fighting applications, as ballast and bilge pumps, and for drainage and waste water applications.

Submersible borehole pumps

UPAchrom 100 CN

Q [m³/h]H [m] T [°C]

Data for 50 Hz operation Also available for 60 Hz

100 Description

≤ 22 Multistage centrifugal pump in shroud design made of stainless steel and ≤ 300 plastic for well diameters of 100 mm (4 inches) and above, available with single-phase AC motor or three-phase motor with motor lead.

Applications

Domestic water supply, general irrigation and spray irrigation, drawdown of groundwater levels, in fire-fighting systems, cooling circuits, fountains, pressure booster systems and air-conditioning systems. UPAchrom 100 CN is also suitable for drinking water applications to ACS.

Control unit, Cervomatic, UPA Control

http://shop.ksb.com/catalog/k0/en/product/ES000003

UPAchrom 100 CC

O [m3/h] H [m] T [°C]

> Data for 50 Hz operation Also available for 60 Hz

≤ 18 Multistage centrifugal pump in ring-section design made of stainless steel for well diameters of 100 mm (4 inches) and above, available with single-phase AC motor or three-phase motor with motor lead.

Domestic water supply, general irrigation and spray irrigation, drawdown of groundwater levels, in fire-fighting systems, cooling circuits, fountains, pressure booster systems and air-conditioning systems. UPAchrom 100 CC is also suitable for drinking water applications to ACS.

Control unit, Cervomatic, UPA Control

http://shop.ksb.com/catalog/k0/en/product/ES000932

UPA 150C

Q [m³/h]H [m] T [°C]

> Data for 50 Hz operation Also available for 60 Hz

150 Description

 \leq 79 All-stainless steel single-stage or multistage centrifugal pump in ring-section design for well diameters of 150 mm (6 inches) and above.

Applications

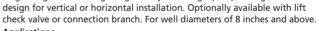
Spray irrigation systems, general irrigation systems, drawdown of groundwater levels, domestic water supply, fountains, heat pump systems, water supply systems

PumpDrive, KSB UMA-S

http://shop.ksb.com/catalog/k0/en/product/ES000003

UPA 200, 200B, 250C

DN Q [m³/h]H [m] T [°C]


Data for 50 Hz operation

Also available for 60 Hz

200 - 250 Description

 \leq 330 Single-stage or multistage single-entry centrifugal pump in ring-section design for vertical or horizontal installation. Optionally available with lift

irrigation and general irrigation, drawdown and maintenance of groundwater levels, fountains and pressure booster systems, mining, fire-

Pumping clean or slightly contaminated water in general water supply, spray

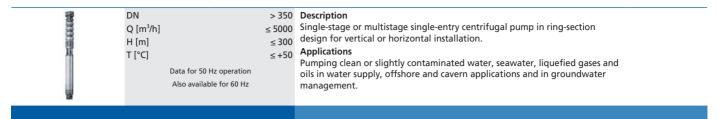
fighting systems, emergency water supply, etc. http://shop.ksb.com/catalog/k0/en/product/ES000003

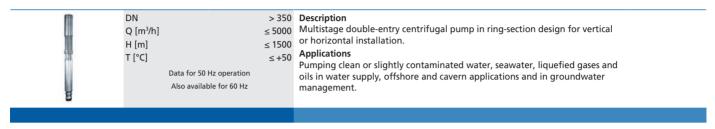
PumpDrive, KSB UMA-S UPA 300, 350

PumpDrive, KSB UMA-S

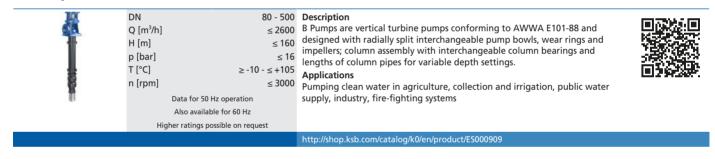
Q [m³/h]H [m] T [°C]

Data for 50 Hz operation Also available for 60 Hz


 \leq 840 Single-stage or multistage single-entry centrifugal pump in ring-section ≤ 480 design for vertical or horizontal installation. Mixed flow hydraulic systems with trimmable impellers. Optionally available with lift check valve or connection branch. For well diameters of 12 inches and above.


Pumping clean or slightly contaminated water in general water supply, spray irrigation and general irrigation, drawdown and maintenance of groundwater levels, fountains and pressure booster systems, mining, firefighting systems, emergency water supply, etc.

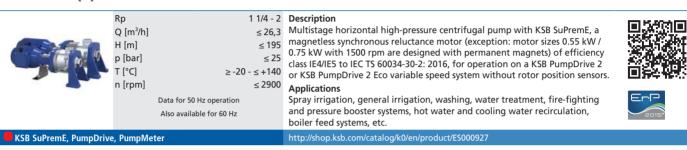
UPA 400-850



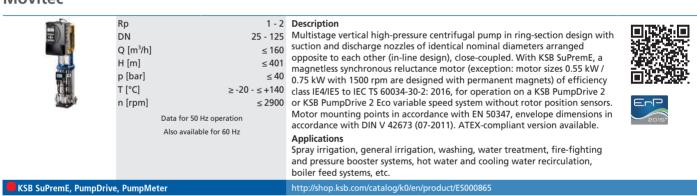
UPA D

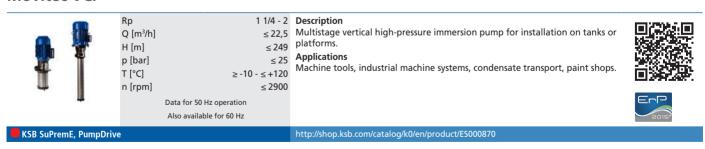
Vertical turbine pumps

B Pump



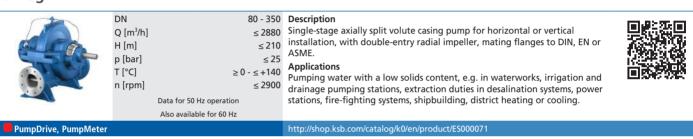
High-pressure pumps


Comeo


Movitec H(S)I

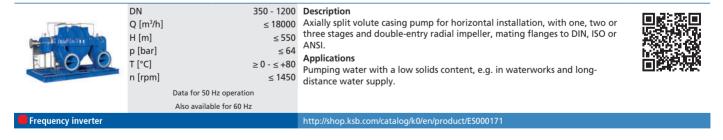
Movited

Movitec VCI



Multitec

Axially split pumps


Omega

RDLO

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 10000 ≤ 290 ≤ 30	installation, with double-entry radial impeller, mating flanges to DIN, EN or ASME. Applications Pumping water with a low solids content, e.g., in waterworks, irrigation and
PumpMeter, Frequency	inverter		http://shop.ksb.com/catalog/k0/en/product/ES000170

RDLP

Hygienic pumps

Vitachrom

DN Q [m³/h]H [m] p [bar] T [°C]

50 - 125 Description > -30 - < +110

 \leq 340 Service-friendly non-self-priming single-stage hygienic close-coupled pump in ≤ 100 back pull-out design with magnetless KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system. The pump features a semi-open impeller and electropolished surfaces. It is very easy to clean by CIP/SIP thanks to its almost complete lack of dead volume or narrow clearances. Its wetted components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Vitachrom is EHEDG-certified. All materials comply with FDA standards and EN 1935/2004. ATEX-compliant version available.

Applications

Hygienic handling of fluids in the food, beverage and pharmaceutical industries as well as in the chemical industry.

KSB SuPremE, PumpDrive, PumpMeter

Vitacast

Q [m³/h] H [m] p [bar] T [°C]

Data for 50 Hz operation Also available for 60 Hz

Other ratings possible on request

Data for 50 Hz operation

Also available for 60 Hz

32 - 200 Description

≤ 10

≤ 10

≤ 540 Service-friendly volute casing pump with magnetless KSB SuPremE motor of ≤ 105 efficiency class IE4/IE5 and PumpDrive variable speed system. All wetted components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Designed with very little dead volume; open impeller, electropolished surface excellent efficiency. Hygienic design for the highest requirements on cleanability (CIP/SIP-compatible), certified by the TNO Nutrition and Food Research Institute to EHEDG standards. All materials comply with FDA standards and EN 1935/2004. ATEX-compliant version available.

Applications

Hygienic handling of fluids in the food, beverage and pharmaceutical industries as well as in the chemical industry.

KSB SuPremE, PumpDrive, PumpMeter

http://shop.ksb.com/catalog/k0/en/product/ES000785

Vitacast Bloc

DN Q [m³/h]H [m] p [bar] T [°C]

Data for 50 Hz operation Also available for 60 Hz Other ratings possible on request

25 - 150 Description

≤ 340 Service-friendly volute casing pump with magnetless KSB SuPremE motor of ≤ 105 efficiency class IE4/IE5 and PumpDrive variable speed system. All wetted components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Designed with very little dead volume; open impeller, electropolished surface excellent efficiency. Hygienic design for the highest requirements on cleanability (CIP/SIP-compatible), certified by the TNO Nutrition and Food Research Institute to EHEDG standards. All materials comply with FDA standards and EN 1935/2004. Trolley available among other accessories. ATEXcompliant version available.

Hygienic handling of fluids in the food, beverage and pharmaceutical industries as well as in the chemical industry.

KSB SuPremE, PumpDrive, PumpMeter

http://shop.ksb.com/catalog/k0/en/product/ES000785

Vitaprime

Q [m³/h]H [m] p [bar] T [°C]

 \geq -20 - \leq +100 Data for 50 Hz operation Also available for 60 Hz

Other ratings possible on request

40 - 80 Description

 \leq 58 Service-friendly close-coupled side channel pump (self-priming) with ≤ 45 magnetless KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system. All wetted components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Hygienic design for the highest requirements on cleanability (CIP/SIP-compatible). All materials comply with FDA standards and EN 1935/2004. Trolley available among other accessories. ATEX-compliant version available.

Applications

Hygienic handling of fluids in the food, beverage and pharmaceutical industries as well as in the chemical industry

KSB SuPremE, PumpDrive

Vitastage

Q [m³/h]H [m] < 150 p [bar] T [°C] > -20 - < +140 Data for 50 Hz operation

Also available for 60 Hz

Other ratings possible on request

≤ 12,5 Description

Multistage centrifugal pump in close-coupled design for vertical or horizontal installation. All wetted components are made of 1.4401/1.4408 (AISI 316/ CF8M) stainless steel. Versatile, robust and especially energy-efficient. CIP/SIPcompatible. All materials comply with FDA standards and EN 1935/2004. Trolley also available among other accessories.

Applications

Processes with hygienic requirements in the food and beverage industries and in the chemical industry.

http://shop.ksb.com/catalog/k0/en/product/ES000788

Vitalobe

DN 25 - 200 Q [m³/h] H [m] < 200 p [bar] ≤ 20 T [°C] > -40 - < +180 Viscosity [cP] ≤ 200000

Data for 50 Hz operation Also available for 60 Hz Other ratings possible on request

Description

Sturdy rotary lobe pump in hygienic design, bi-directional operation possible, horizontal or vertical orientation of connections. Hygienic design, highly CIP/ SIP-compatible due to its almost complete lack of dead volume or narrow clearances. All wetted components made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel; various rotor types, shaft seals and process connections available. Installed as a pump set with gear unit and standardised motor. Vitalobe is EHEDG-certified. The pump elastomers comply with the FDA standards and EN 1935/2004. Accessories include a trolley, a heatable casing or casing cover and a pressure relief arrangement. An ATEX-compliant version

Hygienic and gentle handling of sensitive or high-viscosity fluids in the food, beverage and pharmaceutical industries, the chemical industry and general process engineering.

KSB SuPremE, PumpDrive

http://shop.ksb.com/catalog/k0/en/product/ES000847

Pumps for power station conventional islands

CHTA / CHTC / CHTD

Q [m³/h]H [m] p [bar] T [°C] n [rpm]

≤ 5700 ≤ 5400 ≤ 560 ≤ **+**270 Also available for 60 Hz

Higher ratings possible on request

100 - 700 Description

Horizontal high-pressure barrel-type pumps with radial impellers, single-entry and double-entry, multistage, with flanges or weld end nozzles to DIN and

Applications

Pumping feed water and condensate in power stations and industrial plants, generation of pressurised water for bark peeling and descaling units.

http://shop.ksb.com/catalog/k0/en/product/ES000239

HGB / HGC / HGD

Q [m³/h] H [m] p [bar]

≤ 560 T [°C] ≤ +210 n [rpm] ≤ 7000 Also available for 60 Hz

Higher ratings possible on request

40 - 400

≤ 5300

≤ 2300 Horizontal radially split ring-section pump with radial impellers, single-entry or double-entry, multistage.

Applications

Pumping feed water and condensate in power stations and industrial plants, pumping gas turbine fuels, generating pressurised water for bark peeling and descaling units, snow guns, etc.

HGI

DN 50 - 150 Description	
	ion pump with radial impellers, single-entry,
H [m] ≤ 2000 multistage.	
p [bar] ≤ 200 Applications	
T [°C] S +180 Pumping feed water and conden	sate in power stations and industrial plants.

Also available for 60 Hz

Higher ratings possible on request

Higher ratings possible on request

n [rpm]

n [rpm]

HGM

25 - 125 Description \leq 350 Horizontal radially split product-lubricated multistage ring-section pump with Q [m³/h]≤ 1400 radial impellers, axial and radial single-entry inlet. H [m] **Applications** ≤ 140 p [bar] Pumping feed water in power stations, boiler feed systems and condensate T [°C] ≤+160

≤ 3600

transport in industrial plants. ≤ 3600 Also available for 60 Hz

http://shop.ksb.com/catalog/k0/en/product/ES000236

YNK

DN 125 - 600 Description ≤ 5200 Horizontal radially split single-stage double-entry boiler feed booster pump Q [m³/h](booster system) with cast steel single or double volute casing. ≤ 540 H [m] Applications p [bar] ≤ 100

Pumping feed water in power stations and industrial plants. T [°C] ≤ +250

≤ 3300

http://shop.ksb.com/catalog/k0/en/product/ES000181

LUV / LUVA

DN 100 - 550 Description Vertical spherical casing pump, radial impellers, single-entry, single- to three-Q [m³/h]≤ 7000 ≤ 300 stage. Suitable for very high inlet pressures and temperatures. Integrated wet H [m] winding motor to VDE. Product-lubricated bearings, no need for oil supply p [bar] ≤ 400 systems. Design to TRD, ASME or IBR. ≤ +425 T [°C] **Applications** n [rpm]

≤ 3600 Hot water recirculation in forced-circulation, forced-flow and combinedcirculation boilers for very high pressures and in solar power towers. Data for 50 Hz operation Also available for 60 Hz

http://shop.ksb.com/catalog/k0/en/product/ES000183

WKTB

DN 150 - 300 Description ≤ 1500 Vertical can-type ring-section pump on base frame, multistage, first-stage Q [m³/h]≤ 370 impeller designed as a double-entry suction impeller, radial impellers. Flanges H [m] to DIN or ANSI. p [bar] ≤ 40 **Applications** T [°C] ≤+140 Pumping condensate in power stations and industrial plants. n [rpm] 1500 Data for 50 Hz operation

http://shop.ksb.com/catalog/k0/en/product/ES000506

Also available for 60 Hz

SEZ

Q [m³/h]≤ 65000 Description H [m] T [°C] n [rpm]

Data for 50 Hz operation

Also available for 60 Hz

Higher ratings possible on request

≤ 33 ≤ +40

Vertical tubular casing pump with open mixed flow impeller, pump intake with inlet nozzle or suction elbow, pull-out design available, discharge nozzle arranged above- or underfloor, flanges to DIN or ANSI standards available.

Applications

Pumping raw water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants.

http://shop.ksb.com/catalog/k0/en/product/ES000173

SEZT

Q [m³/h] H [m] T [°C] n [rpm]

≤ 990 Data for 50 Hz operation Also available for 60 Hz Higher ratings possible on request

≤ 20000 Description

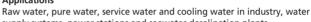
< 110

Vertical tubular casing pump with open or closed mixed flow impeller

≤ +45 Applications

Handling seawater in seawater desalination plants.

http://shop.ksb.com/catalog/k0/en/product/ES000174


PHZ

Q [m³/h] H [m] ≤ 25 T [°C] ≤+80 n [rpm] Data for 50 Hz operation Also available for 60 Hz Higher ratings possible on request

≤ 65000 Description

Vertical tubular casing pump with mixed flow propeller, pump intake with inlet nozzle or suction elbow, pull-out design available, discharge nozzle arranged above- or underfloor, flanges to DIN or ANSI standards available. **Applications**

supply systems, power stations and seawater desalination plants.

http://shop.ksb.com/catalog/k0/en/product/ES000158

PNZ

Q [m³/h] H [m] T [°C] ≤+80 ≤ 990 n [rpm] Data for 50 Hz operation Also available for 60 Hz Higher ratings possible on request

≤ 65000 Description

 \leq 15 Vertical tubular casing pump with axial propeller, pump intake with inlet nozzle or suction elbow, pull-out design available, discharge nozzle arranged above- or underfloor, flanges to DIN or ANSI standards available.

Applications

Raw water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants.

http://shop.ksb.com/catalog/k0/en/product/ES000160

SNW

DN 350 - 800 Q [m³/h] < 6500 H [m] ≤ 60 p [bar] ≤ 10 T [°C] ≤+60 n [rpm] ≤ 1500

> Data for 50 Hz operation Also available for 60 Hz Higher ratings possible on request

Description

Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor.

Applications

Irrigation and drainage, stormwater pumping stations, for raw water and pure water, water supply, cooling water.

PNW

Q [m³/h]< 9000 H [m] p [bar] T [°C] n [rpm] ≤ 1500

> Data for 50 Hz operation Also available for 60 Hz Higher ratings possible on request

350 - 800 Description

Vertical tubular casing pump with axial propeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above or ≤ 10 below floor level. ≤ 10

Applications

≤ +60

Irrigation and drainage, stormwater pumping stations, for raw water and pure water, water supply, cooling water.

http://shop.ksb.com/catalog/k0/en/product/ES000163

Beveron

Q [m³/s] H [m] Data for 50 Hz operation Also available for 60 Hz

Higher ratings possible on request

≤ 30 Description

≤ 27 Concrete volute casing pump with mixed flow impeller, single-stage, with zero-maintenance Residur bearings lubricated by the fluid handled.

Coast protection and flood control, irrigation and drainage, low-lift pumping stations, reservoir filling, cooling water, raw and pure water.

http://shop.ksb.com/catalog/k0/en/product/ES000868

SPY

DN Q [m³/h]H [m] p [bar] T [°C] n [rpm]

≤ 21600 ≤ +105 ≤ 1480

Data for 50 Hz operation Also available for 60 Hz Higher ratings possible on request

350 - 1200 Description

Long-coupled volute casing pump, single-stage, in back pull-out design.

≤ 50 Applications

Irrigation, drainage and water supply systems, for pumping condensate, cooling water, service water, etc.

Pumps for nuclear power stations

RER

Q [m³/h]H [m] p [bar] T [°C] n [rpm]

Available for 50 Hz and 60 Hz

≤800 Description ≤ 40000

≤ 140

≤ 175

≤ +350

≤ 1800

≤ 1800

Vertical single-stage reactor coolant pump with forged circular casing plated on the inside, with diffuser, either with integrated pump thrust bearing or shaft supported by motor bearing.

Applications

Reactor coolant recirculation in nuclear power stations.

http://shop.ksb.com/catalog/k0/en/product/ES000144

RSR

DN Q [m³/h]H [m] p [bar] T [°C] n [rpm]

< 215 ≤ 175 ≤ +350

Available for 50 Hz and 60 Hz Higher ratings possible on request

Higher ratings possible on request

≤ 750 Description

≤ 24000 Vertical single-stage reactor coolant pump with cast or forged casing, shaft supported by motor bearing.

Applications

Reactor coolant recirculation in nuclear power stations.

RUV

DN Q [m³/h] < 22000 H [m] ≤ 111 p [bar] ≤ 155 T [°C] ≤ +350 n [rpm] ≤ 1800

> Available for 50 Hz and 60 Hz Higher ratings possible on request

≤ 650 Description

Vertical single-stage reactor coolant pump. Seal-less design with integrated wet rotor motor and integrated flywheel. Product-lubricated bearings, no oil

Applications

Reactor coolant recirculation in generation III+ nuclear power stations.

http://shop.ksb.com/catalog/k0/en/product/ES000848

PSR

Q [m³/h] < 9000 ≤ 45 H [m] p [bar] < 75 T [°C] ≤ +300 ≤ 2000 n [rpm] Available for 50 Hz and 60 Hz

Higher ratings possible on request

Vertical pump set integrated in the reactor containment floor, seal-less pump with leak-free, low-maintenance wet rotor motor.

Applications

Reactor coolant recirculation in boiling water reactors.

http://shop.ksb.com/catalog/k0/en/product/ES000150

RHD

125 - 500 Q [m³/h]≤ 6500 H [m] ≤ 1000 p [bar] ≤ 150 ≤ **+**210

Available for 50 Hz and 60 Hz

Description

≤ 6500

≤320

≤ +430

≤ 300

≤ 220

≤+180

Horizontal single-stage double-entry main feed water pump MFWP, cast or forged variant.

Applications

Main feed water supply (MFWS) in steam generation systems of nuclear power stations.

Higher ratings possible on request

LUV Nuclear

DN Q [m³/h] H [m] p [bar] T [°C]

Data for 50 Hz operation

Also available for 60 Hz

40 - 600 Description ≤ 7000 ≤ 300

Vertical pump with integrated motor, single-entry, single- to three-stage. Suitable for very high inlet pressures and temperatures. Integrated wet winding motor to VDE. Product-lubricated bearings, no oil supply systems required. Design to ASME Section 3, KTA, etc.

Applications

As reactor water clean-up pump in boiling water reactors, reactor coolant pump in boiling water and pressurised water reactors and recirculation pump in test facilities

http://shop.ksb.com/catalog/k0/en/product/ES000855

RHM

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]

≤ 8000 Available for 50 Hz and 60 Hz Higher ratings possible on request

≤ 150 Description

Horizontal multistage barrel pull-out pump.

Applications ≤ 2100

Core flooding, emergency cooling and residual heat removal systems, chemical and volume control systems, control rod drive systems, high-pressure and medium-pressure safety injection systems, emergency feed water systems,

start-up and shutdown feed water systems, high-pressure charging.

RVM

DN	≤ 85
Q [m³/h]	≤ 50
H [m]	≤ 2000
p [bar]	≤ 200
T [°C]	≤ +100
n [rpm]	≤ 6000

Available for 50 Hz and 60 Hz Higher ratings possible on request Description

Vertical multistage barrel pull-out pump.

Applications

Core flooding, emergency cooling and residual heat removal systems, chemical and volume control systems, high-pressure and medium-pressure safety injection systems.

http://shop.ksb.com/catalog/k0/en/product/ES000243

RHR

Q [m³/h]H [m] p [bar] T [°C] n [rpm] Available for 50 Hz and 60 Hz

Description ≤ 190

≤ 6000 Horizontal circular casing pump with forged or cast pressure boundary and

Applications < 63

Core flooding, emergency cooling and residual heat removal systems, ancillary ≤ **+**200 systems, acid feed system and low-pressure injection system, component ≤ 3600

cooling water systems.

http://shop.ksb.com/catalog/k0/en/product/ES000140

RVR

DN ≤ 6000 Q [m³/h]H [m] ≤ 190 p [bar] ≤ 63 T [°C] n [rpm] ≤ 3600 Available for 50 Hz and 60 Hz

Description

Vertical circular casing pump with forged or cast pressure boundary and diffuser.

Applications

Core flooding, emergency cooling and residual heat removal systems, ancillary systems, acid feed system and low-pressure injection system, component cooling water systems.

http://shop.ksb.com/catalog/k0/en/product/ES000142

RVT

Q [m³/h]H [m] ≤ 131 p [bar] ≤ 30 T [°C] ≤+160 ≤ 1485 n [rpm] Available for 50 Hz and 60 Hz

Higher ratings possible on request

≤ 350 Description

≤ 1100 Vertical multistage barrel pull-out pump with double-entry suction impeller and forged distributor casing.

Applications

Low-pressure injection systems, emergency feed water systems, emergency cooling and residual heat removal systems

Pumps for desalination by reverse osmosis

Data for 50 Hz operation Also available for 60 Hz

RPH-RO

DN Q [m³/h]H [m] p [bar] T [°C]

≤ +40

100 - 350 Description

 \leq 2500 Horizontal radially split volute casing pump for dry installation, made of ≤ 110 super-duplex stainless steel.

Applications ≤ 80

Booster pump for RO seawater desalination systems.

HGM-RO

DIN	05 - 250
Q [m³/h]	≤ 1500
H [m]	≤ 950
p [bar]	≤ 120
T [°C]	≥ 0 - ≤ +40
n [rpm]	≤ 3600

Also available for 60 Hz

Description

Horizontal radially split product-lubricated multistage ring-section pump with radial impellers and plain bearings, axial and radial single-entry inlet. Duplex stainless steel variant or super duplex stainless steel variant, also suitable for chilled water applications.

Applications

High-pressure pump for RO seawater desalination systems

http://shop.ksb.com/catalog/k0/en/product/ES000237

Multitec-RO

N		50 - 150
Q [m³/h]		≤ 850
l [m]		≤ 1000
[bar]		≤ 100
[°C]		≥ -10 - ≤ +45
rpm]		≤ 3500
	Data for 50	Hz operation

Also available for 60 Hz

Description

Horizontal multistage centrifugal pump in ring-section design. Axial suction nozzle. Discharge nozzle can be turned in steps of 90°. Closed radial impellers. Made of duplex or superduplex stainless steel.

Applications

high-pressure pump for RO seawater desalination systems and geothermal systems (re-injection of geothermal water into the aquifer).

KSB SuPremE, PumpDrive

Positive displacement pumps

RC / RCV

N		20 - 100
(m³/h)		≤ 78
l [m]		≤ 100
[bar]		≤ 10
[°C]		≥ +5 - ≤ +80
[rpm]		≤ 1500
	Data for 50	Hz operation

Also available for 60 Hz

Description

Helical gear pump, self-priming, with bypass valve, close-coupled design, for horizontal installation with baseplate or vertical installation. With mechanical seal

Applications

Fuel feed, handling fuel, lubricating oil and viscous fluids, lubrication systems.

http://shop.ksb.com/catalog/k0/en/product/ES000744

Fire-fighting systems

EDS

N	32 - 300
[m³/h]	≤ 840
[m]	≤ 140
[bar]	≤ 16
[°C]	≥ +5 - ≤ +50
[rpm]	≤ 3000
	Data for 50 Hz operation

Also available for 60 Hz

Description

Automatic fire-fighting system consisting of a jockey pump and one or several duty pumps, with electric motor or diesel engine. Includes manifold, valves, accessories and control unit. To EN 12845, CEA 4001, UNE-23500, NFPA-20, etc.

Applications

Office buildings, hotels, industry, shopping malls, etc.

DU / EU

T [°C] n [rpm]

DN Q [m³/h] H [m] ≤ 25 FM, etc. p [bar]

Also available for 60 Hz

≤ 3000 Data for 50 Hz operation

32 - 350 Description

≤ 2500 Automatic fire-fighting system consisting of pumps with electric motor or diesel engine and control unit. To EN 12845, CEA 4001, UNE-23500, NFPA-20, EM etc.

 \leq 25 Applications Office buildings, hotels, industry, shopping malls, etc.

Automation 73

Control units

Controlmatic E

Number of pumps U [V]

≤ 1 Description

1~230 Automatic control unit for pressure-controlled starting, flow-controlled stopping and monitoring of a single pump

Applications

In water supply systems in combination with Multi Eco, Ixo, etc.

Controlmatic E.2

Number of pumps U [V]

≤ 1 Description

1~230 Automatic control unit for pressure-controlled starting, flow-controlled stopping and monitoring of a single pump

Applications

In water supply systems in combination with Multi Eco, Ixo, etc.

http://shop.ksb.com/catalog/k0/en/product/ES000276

Cervomatic EDP.2

Number of pumps U [V]

≤ 1 Description

1~230 / 3~400 Automatic control unit for pressure-controlled starting and either pressurecontrolled or flow-controlled stopping and monitoring of a single pump.

In water supply systems with pumps of the Multi Eco, Ixo, etc. type series with single-phase or three-phase motors

http://shop.ksb.com/catalog/k0/en/product/ES000275

LevelControl Basic 2

Number of pumps P [kW]

U [V] 1~230 / 3~400

Available for higher ratings and other mains voltages on request.

≤ 2 Description

≤ 22 Level control unit for controlling and protecting either one or two pumps. DOL starting up to 4 kW, star-delta starting up to 22 kW. Higher ratings on request.

Applications

Tank drainage using float switches, digital switches, 4...20 mA, pneumatic (without compressor) or bubbler system in building services and waste water applications. Tank filling using float switches, digital switches or 4...20 mA signals in building services and water supply applications.

http://shop.ksb.com/catalog/k0/en/product/ES000603

UPA Control

Number of pumps P [kW] U [V]

≤ 1 Description

1~230 / 3~400

The KSB switchgear is suitable for level control and protection of submersible borehole pumps, submersible motor pumps and dry-installed pumps with single-phase AC motors 1~ 230 V or three-phase motors 3~ 230 / 400 V / 50 Hz The motor is started DOL. Enclosure: IP56, dimensions: $205 \times 255 \times 170$ mm

 $(H \times W \times D)$.

Applications Irrigation and filling or draining tanks in water supply applications in combination with 4" and 6" pumps.

Hyatronic N

Number of pumps P [kW] U [V]

Available for higher ratings and other mains voltages on request.

≤ 6 Description

22 Pump control system in control cabinet for cascade starting and stopping of 3~400 up to six pumps.

Applications

For draining tanks and sumps in drainage and waste water disposal applications. For filling tanks in water supply applications. Level measurement using float switch or 4...20 mA sensor.

http://shop.ksb.com/catalog/k0/en/product/ES000303

Monitoring and diagnosis

Enclosure

Connections

Amacontrol II

T [°C] Dimensions $H \times W \times D [mm]$ U [V]

IP20/IP54 Description

180 × 250 × 115

AC 230

 \geq 0 - \leq +40 Monitoring system for submersible motor pumps, with tripping function.

Amacontrol III

Fastening 35 mm standard rail T [°C] ≥ -30 - ≤ +70 Dimensions $H \times W \times D [mm]$ U [V] U [V] AC/DC 24 \pm 10 %

Spring-loaded Description

terminals Protection module for water and waste water products as all-in-one device for motor temperature measurement, bearing temperature measurement, leakage measurement, vibration measurement and voltage measurement, as well as diagnosing a pump, pump system or submersible mixer to ensure trouble-free and reliable operation.

Applications

 $127.2 \times 45 \times 113.6$ In water and waste water systems in combination with Amacan, Amamix, AC 115-230 ± 10 % Amaprop, Amaline, Amarex KRT or Sewatec

Legal information/Copyright Product Portfolio Pumps I Automation All rights reserved. The contents provided herein must neither be distributed, copied, reproduced, edited or processed for any other purpose, nor otherwise transmitted, published or made available to a third party without the manufacturer's express written consent. Subject to technical modification without prior notice. © KSB SE & Co. KGaA, Frankenthal 28/11/2019

The KSB Newsletter –
don't miss out, sign up now:
www.ksb.com/newsletter